Effect of Hydrogen-Consuming Compounds on In Vitro Ruminal Fermentation, Fatty Acids Profile, and Microbial Community in Water Buffalo.

Curr Microbiol

Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China.

Published: June 2022

The present study aimed to investigate the effect of hydrogen-consuming compounds on ruminal methane (CH) production, in vitro fermentation parameters, fatty acids profile, and microbial community in water buffalo. Different sodium nitrate to disodium fumarate ratios [2:1 (F), 1:1 (S), 1:2 (T)] were studied in vitro by batch culture technique in the presence of linoleic acid. Results revealed that the dominant bacterial communities were not affected with sodium nitrate and disodium fumarate, whereas CH production and Verrucomicrobia, Succiniclasticum, norank_f__Muribaculaceae, and Prevotellaceae_UCG-003 were reduced (P < 0.05). However, ruminal pH, unsaturated fatty acids/saturated fatty acids (UFA/SFA) and Campilobacterota, Selenomonas, Succinivibrio, Oribacterium, Christensenellaceae_R-7_group, Campylobacter, Shuttleworthia, Schwartzia, and Prevotellaceae_YAB2003_group were increased (P < 0.05). Total volatile fatty acids (TVFA) and Spirochaetae, Fibrobacterota, Verrucomicrobia, Fibrobacter, Treponema, and Prevotellaceae were decreased in F (P < 0.05), but cis-9, trans-11CLA, acetate/propionate and Proteobacteria, Campilobacterota, Selenomonas, Succinivibrio, and Campylobacter were increased in F (P < 0.05). The highly selected bacterial genera in F were Campylobacter and Succinivibrio. The disodium fumarate, enhanced (P < 0.05) the TVFA, propionate, total bacteria, Butyrivibrio proteoclasticus, and Atypical butyrivibrio. The concentrations of C18:3n3, C20:3n6, C21:0, C22:2n6, and C22:1n9, as well as the populations of total fungi, protozoa, methanogens, Butyrivibrio hungatei in T were higher (P < 0.05). The highly selected bacterial genera in T were Fibrobacter and Treponema. Conclusively, the addition of sodium nitrate and disodium fumarate can reduce the CH production and optimize ruminal fatty acid composition. Furthermore, disodium fumarate can alleviate the adverse effect of sodium nitrate on the rumen fermentation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-022-02904-7DOI Listing

Publication Analysis

Top Keywords

hydrogen-consuming compounds
8
fatty acids
8
acids profile
8
profile microbial
8
microbial community
8
community water
8
water buffalo
8
sodium nitrate
8
nitrate disodium
8
disodium fumarate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!