Layered oxide cathodes have demonstrated great potential for potassium-ion batteries (PIBs) on account of high reversible capacity, appropriate diffusion paths, and low cost. However, their electrochemical performance in PIBs is generally worse than that in lithium-ion batteries due to large structural changes and deformations during charging and discharging. To improve their potassium storage performance, a series of strategies have been developed in recent studies. In this review, we summarize the latest advancements in layered oxide cathodes for PIBs through different crystal regulation strategies, including transition metal layer doping, potassium content optimization, oxygen partial substitution, functional morphology construction and air stability improvement. Meanwhile, the relationship between the electrochemical properties and structural evolution of these modified cathodes is also investigated. In addition, the challenges and prospects of these layered oxide cathodes in PIBs are analyzed in detail, providing constructive insights for future applications of PIBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202201562 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!