The charge generation-recombination dynamics in three narrow-bandgap near-IR absorbing nonfullerene (NFA) based organic photovoltaic (OPV) systems with varied donor concentrations of 40%, 30%, and 20% are investigated. The dilution of the polymer donor with visible-range absorption leads to highly transparent active layers with blend average visible transmittance (AVT) values of 64%, 70%, and 77%, respectively. Opaque devices in the optimized highly reproducible device configuration comprising these transparent active layers lead to photoconversion efficiencies (PCEs) of 7.0%, 6.5%, and 4.1%. The investigation of these structures yields quantitative insights into changes in the charge generation, non-geminate charge recombination, and extraction dynamics upon dilution of the donor. Lastly, this study gives an outlook for employing the highly transparent active layers in semitransparent organic photovoltaics (ST-OPVs).

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202203796DOI Listing

Publication Analysis

Top Keywords

transparent active
16
active layers
16
highly transparent
12
unraveling device
4
device physics
4
physics dilute-donor
4
dilute-donor narrow-bandgap
4
narrow-bandgap organic
4
organic solar
4
solar cells
4

Similar Publications

Corporate Social Responsibility (CSR) refers to initiatives undertaken by corporations that aim to make a positive impact on society. It is unclear to what extent these aims are achieved in relation to population health. We explored the evidence for mechanisms by which CSR has positive or negative effects on population health through a systematic-narrative hybrid review of 97 relevant articles.

View Article and Find Full Text PDF

In April 2024, the Adult Immunization Board convened a technical meeting to explore the latest strategies and identify exemplary approaches regarding the implementation of vaccines for adults into Europe's National Immunization Programs (NIPs). The meeting was built around three pillars: decision making for introducing a new vaccine, implementation, monitoring, and evaluation. The increasing number of new vaccines available in a context of competing health priorities warrants transparent and evidence-based decision-making processes for vaccine introduction.

View Article and Find Full Text PDF

Inno4Vac, a public-private partnership funded by the IMI2/EU/EFPIA Joint Undertaking (IMI2 JU), brings together academic institutions, SMEs, and pharmaceutical companies to accelerate and de-risk vaccine development. The project has made significant strides in the selection and production of challenge agents for influenza, respiratory syncytial virus (RSV), and toxigenic Clostridioides difficile for controlled human infection model studies (CHIMs). A regulatory workshop held on March 20, 2024, addressed the standardisation of clinical procedures, ethical considerations, endpoints, and data integrity, highlighting the ongoing initiatives related to these CHIMs.

View Article and Find Full Text PDF

ResViT FusionNet Model: An explainable AI-driven approach for automated grading of diabetic retinopathy in retinal images.

Comput Biol Med

January 2025

Department of Creative Technologies, Air University, Islamabad, 44000, Pakistan. Electronic address:

Background And Objective: Diabetic Retinopathy (DR) is a serious diabetes complication that can cause blindness if not diagnosed in its early stages. Manual diagnosis by ophthalmologists is labor-intensive and time-consuming, particularly in overburdened healthcare systems. This highlights the need for automated, accurate, and personalized machine learning approaches for early DR detection and treatment.

View Article and Find Full Text PDF

Knee exoskeletons have been developed to assist, stabilize, or improve human movement or recovery. However, exoskeleton designers must implement transparency (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!