Background: Anaplastic thyroid cancer (ATC) is an aggressive malignancy without effective treatments. ATC cells demonstrate upregulated glycolysis (Warburg effect), generating lactate that is subsequently exported by monocarboxylate transporter 4 (MCT4). This study aims to determine whether MCT4 inhibition can suppress ATC growth.

Study Design: ATC cell lines 8505C, JL30, and TCO1 were grown in low (3 mmol/L; LG) or high (25 mmol/L; HG) glucose medium containing the lactate shuttle inhibitors acriflavine (10-25 μmol/L; ACF), syrosingopine (100 µmol/L; SYR), or AZD3965 (20 µmol/L; AZD). Lactate level and cell proliferation were measured with standard assays. Seahorse analysis was performed to determine glycolytic response.

Results: Compared with HG, addition of ACF to LG decreased lactate secretion for both 8505C (p < 10-5) and JL30 (p < 10-4) cells, whereas proliferation was also reduced (p < 10-4 and 10-5, respectively). During Seahorse analysis, addition of oligomycin increased acidification by 84 mpH/min in HG vs 10 mpH/min in LG containing ACF (p < 10-5). Treatment with LG and SYR drastically diminished 8505C and TCO1 growth vs HG (p < 0.01 for both). LG and AZD treatment also led to reduced proliferation in tested cell lines (p ≤ 0.01 for all) that was further decreased by addition of ACF (p < 10-4 vs HG, p ≤ 0.01 vs LG and AZD).

Conclusion: Inhibition of lactate shuttles significantly reduced proliferation and glycolytic capacity of ATC cells in a low-glucose environment. Targeting suppression of glycolytic and lactate processing pathways may represent an effective treatment strategy for ATC.

Download full-text PDF

Source
http://dx.doi.org/10.1097/XCS.0000000000000226DOI Listing

Publication Analysis

Top Keywords

anaplastic thyroid
8
thyroid cancer
8
atc cells
8
cell lines
8
seahorse analysis
8
addition acf
8
reduced proliferation
8
≤ 001
8
lactate
7
atc
6

Similar Publications

Alectinib treatment for 2 non-small cell lung carcinoma patients carrying different novel fusions.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

July 2024

Department of Pathology, Second Xiangya Hospital, Central South University, Changsha 410011.

The genomic fusions of the anaplastic lymphoma kinase () gene have been widely recognized as effective therapeutic targets for non-small cell lung carcinoma (NSCLC). The Second Xiangya Hospital of Central South University has treated 2 NSCLC patients with 2 distinct novel gene fusions. Case 1 was a 55-year-old male with a solid nodule located in the right hilar lobe on enhanced CT scan.

View Article and Find Full Text PDF

Metastasis is the trigger of death in anaplastic thyroid cancer (ATC) patients, yet the specific mechanisms at play are still largely enigmatic. While the involvement of LARP1 in the metastatic process of various cancers has been documented, there is a noticeable gap in the literature regarding its potential influence on ATC metastasis. Molecular studies probed LARP1 expression within ATC cells, with subsequent in vitro experiments examining the effects of LARP1 on ATC cell metastasis and the mTOR signaling cascade.

View Article and Find Full Text PDF

Papillary thyroid cancer (PTC) is one of the fastest-growing cancers worldwide, lacking established causal factors or validated early diagnostics. Human endogenous retroviruses (HERVs), comprising 8% of human genomes, have potential as PTC biomarkers due to their comparably high baseline expression in healthy thyroid tissues, indicating homeostatic roles. However, HERV regions are often overlooked in genome-wide association studies because of their highly repetitive nature, low sequence coverage, and decreased sequencing quality.

View Article and Find Full Text PDF

Thyroid cancer incidence is rising globally. Papillary thyroid carcinoma (PTC) is the most common subtype, usually with a favorable prognosis, while follicular, medullary, and anaplastic thyroid carcinomas carry higher risks. This study examines the relationship between biological markers- mutation, thyroglobulin (Tg), and calcitonin-and thyroid cancer prognosis.

View Article and Find Full Text PDF

Pazopanib, a multi-targeted tyrosine kinase inhibitor, has been explored for its efficacy in treating various subtypes of thyroid cancer, including differentiated thyroid carcinoma (DTC), medullary thyroid carcinoma (MTC), and anaplastic thyroid carcinoma (ATC). This systematic review assesses the efficacy and safety of pazopanib, focusing on the progression-free survival (PFS), overall survival (OS), and response rates and adverse events. A comprehensive search was conducted in databases including PubMed, Scopus, and Web of Science up to October 2024 to identify randomized controlled trials and phase II clinical trials that investigated the use of pazopanib in thyroid cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!