NO, and mixtures of N and O, dissolved in water-both in the presence and absence of added noble gases-have been subjected to ultrasonication with quantification of nitrite and nitrate products. Significant increase in product formation upon adding noble gas for both reactant systems is observed, with the reactivity order Ne < Ar < Kr < Xe. These observations lend support to the idea that extraordinarily high electronic and vibrational temperatures arise under these conditions. This is based on recent observations of sonoluminescence in the presence of noble gases and is inconsistent with the classical picture of adiabatic bubble collapse upon acoustic cavitation. The reaction mechanisms of the first few reaction steps necessary for the critical formation of NO are discussed, illustrated by quantum chemical calculations. The role of intermediate NO in this series of elementary steps is also discussed to better understand the difference between the two reactant sources (NO and 2 : 1 N : O; same stoichiometry).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp01995g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!