Aims: Visceral hypersensitivity in irritable bowel syndrome (IBS) is widespread, but effective therapies for it remain elusive. As a canonical anti-inflammatory protein, suppressor of cytokine signaling 3 (SOCS3) reportedly relays exchange protein 1 directly activated by cAMP (Epac1) signaling and inhibits the intracellular response to inflammatory cytokines. Despite the inhibitory effect of SOCS3 on the pro-inflammatory response and neuroinflammation in PVN, the systematic investigation of Epac1-SOCS3 signaling involved in visceral hypersensitivity remains unknown. This study aimed to explore Epac1-SOCS3 signaling in the activity of hypothalamic paraventricular nucleus (PVN) corticotropin-releasing factor (CRF) neurons and visceral hypersensitivity in adult rats experiencing neonatal colorectal distension (CRD).

Methods: Rats were subjected to neonatal CRD to simulate visceral hypersensitivity to investigate the effect of Epac1-SOCS3 signaling on PVN CRF neurons. The expression and activity of Epac1 and SOCS3 in nociceptive hypersensitivity were determined by western blot, RT-PCR, immunofluorescence, radioimmunoassay, electrophysiology, and pharmacology.

Results: In neonatal-CRD-induced visceral hypersensitivity model, Epac1 and SOCS3 expressions were downregulated and IL-6 levels elevated in PVN. However, infusion of Epac agonist 8-pCPT in PVN reduced CRF neuronal firing rates, and overexpression of SOCS3 in PVN by AAV-SOCS3 inhibited the activation of PVN neurons, reduced visceral hypersensitivity, and precluded pain precipitation. Intervention with IL-6 neutralizing antibody also alleviated the visceral hypersensitivity. In naïve rats, Epac antagonist ESI-09 in PVN increased CRF neuronal firing. Consistently, genetic knockdown of Epac1 or SOCS3 in PVN potentiated the firing rate of CRF neurons, functionality of HPA axis, and sensitivity of visceral nociception. Moreover, pharmacological intervention with exogenous IL-6 into PVN simulated the visceral hypersensitivity.

Conclusions: Inactivation of Epac1-SOCS3 pathway contributed to the neuroinflammation accompanied by the sensitization of CRF neurons in PVN, precipitating visceral hypersensitivity and pain in rats experiencing neonatal CRD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344090PMC
http://dx.doi.org/10.1111/cns.13880DOI Listing

Publication Analysis

Top Keywords

visceral hypersensitivity
36
epac1-socs3 signaling
16
crf neurons
16
epac1 socs3
12
visceral
11
pvn
11
hypersensitivity
10
neonatal-crd-induced visceral
8
rats experiencing
8
experiencing neonatal
8

Similar Publications

Background: Irritable bowel syndrome (IBS) is a common gastrointestinal disease. Recently, an increasing number of studies have shown that Toll-like receptor 4 (TLR4), widely distributed on the surface of a variety of epithelial cells (ECs) and immune sentinel cells in the gut, plays a vital role in developing IBS.

Objectives: We sought to synthesize the existing literature on TLR4 in IBS and inform further study.

View Article and Find Full Text PDF

Background: Disorders of gut-brain interaction (DGBI) predominate in women, but little is known about sex differences in menses-related or menopause symptoms.

Methods: Using data from the Rome Foundation Global Epidemiology Survey, we assessed Rome IV DGBI symptoms in individuals in 26 countries who met criteria for ≥ 1 of 5 DGBI: irritable bowel syndrome (IBS), functional dyspepsia (FD), functional constipation (FC), functional diarrhea (FDr), or functional bloating (FB). Participants included pre- and post-menopausal women with DGBI and age-matched men.

View Article and Find Full Text PDF

Objective: This study evaluates the effect of electro-acupuncture (EA) on visceral hypersensitivity (VH) and the expression of N-methyl-D-aspartate receptor-2B (NMDAR-2B) and glutamate transporter EAAT2 in goats.

Methods: Twenty-four goats were divided into four groups: saline, 2, 4, 6-Trinitrobenzenesulfonic acid (TNBS), TNBS + EA, and sham EA. EA was administered at Zusanli (ST36) with 60 Hz and 1-3 mA on specified days.

View Article and Find Full Text PDF

Pain and psychological stress are intricately linked, with sex differences evident in disorders associated with both systems. Glutamatergic signalling in the central nervous system is influenced by gonadal hormones via the hypothalamic-pituitary-adrenal axis and is central in pain research. Emerging evidence supports an important role for the gut microbiota in influencing pain signalling.

View Article and Find Full Text PDF

Rats which experienced neonatal bladder inflammation (NBI) have been demonstrated to exhibit latent bladder hypersensitivity with a nociceptive component that becomes unmasked by a second inflammatory insult as an adult. Manifested as augmented reflex and neuronal responses to urinary bladder distension (UBD), these NBI-induced changes are revealed by using inflammation of nearby structures as an adult pretreatment. The effect of inflammation in distant structures is not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!