Therapeutic Targeting of Overexpressed MiRNAs in Cancer Progression.

Curr Drug Targets

School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia.

Published: November 2022

MicroRNAs (miRNAs) are non-coding RNAs involved in the modulation of various biological processes, and their dysregulation is greatly associated with cancer progression as miRNAs can act as either tumour suppressors or oncogenes, depending on their intended target, mechanism of actions, and expression levels. This review paper aims to shed light on the role of overexpressed miRNAs in cancer progression. Cancer cells are known to upregulate specific miRNAs to inhibit the expression of genes regulating the cell cycle, such as PTEN, FOXO1, SOX7, caspases, KLF4, TRIM8, and ZBTB4. Inhibition of these genes promotes cancer development and survival by inducing cell growth, migration, and invasion while evading apoptosis, which leads to poor cancer survival rates. Therefore, the potential of antisense miRNAs in treating cancer is also explored in this review. Antisense miRNAs are chemically modified oligonucleotides that can reverse the action of overexpressed miRNAs. Currently, the therapeutic potential of antisense miRNAs is being validated in both in vitro and in vivo models. Studies have shown that antisense miRNAs could slow down the progression of cancer while enhancing the action of conventional anticancer drugs. These findings provide hope for future oncologic care as this novel intervention is in the process of clinical translation.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389450123666220613163906DOI Listing

Publication Analysis

Top Keywords

antisense mirnas
16
overexpressed mirnas
12
cancer progression
12
mirnas
10
cancer
8
mirnas cancer
8
progression cancer
8
potential antisense
8
therapeutic targeting
4
targeting overexpressed
4

Similar Publications

The Dual Role of ADAMTS9-AS1 in Various Human Cancers: Molecular Pathogenesis and Clinical Implications.

Anticancer Agents Med Chem

January 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.

Long non-coding RNA (lncRNA) is a type of non-coding RNA distinguished by a length exceeding 200 nucleotides. Recent studies indicated that lncRNAs participate in various biological processes, such as chromatin remodeling, transcriptional and post-transcriptional regulation, and the modulation of cell proliferation, death, and differentiation, hence influencing gene expression and cellular function. ADAMTS9-AS1, an antisense long non-coding RNA situated on human chromosome 3p14.

View Article and Find Full Text PDF

The MIR-NAT MAPT-AS1 does not regulate Tau expression in human neurons.

PLoS One

January 2025

Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium.

The MAPT gene encodes Tau protein, a member of the large family of microtubule-associated proteins. Tau forms large insoluble aggregates that are toxic to neurons in several neurological disorders, and neurofibrillary Tau tangles represent a key pathological hallmark of Alzheimer's disease (AD) and other tauopathies. Lowering Tau expression levels constitutes a potential treatment for AD but the mechanisms that regulate Tau expression at the transcriptional or translational level are not well understood.

View Article and Find Full Text PDF

Long non-coding RNA OSTM1-AS1 promotes renal cell carcinoma progression by sponging miR-491-5p and upregulating MMP-9.

Sci Rep

January 2025

Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.

Long noncoding RNAs (lncRNAs) have been recognized as essential regulators in various human malignancies. Hundreds of lncRNAs were known to be abnormally expressed in renal cell carcinoma (RCC) through a lncRNA expression microarray, among which lncRNA OSTM1 antisense RNA 1(OSTM1-AS1) was revealed as one of the most abundant lncRNAs. However, the function of OSTM1-AS1 in RCC remains unknown.

View Article and Find Full Text PDF

Anti-miR21-conjugated DNA nanohydrogel for enhanced cancer therapy.

Biomater Adv

December 2024

Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea. Electronic address:

MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach.

View Article and Find Full Text PDF

The diagnostic value and molecular mechanisms of LncRNA ZFAS1 in neuropathic pain.

Neurosci Lett

January 2025

Department of Anesthesiology and Surgery, Shengli Oilfield Central Hospital, Dongying 257034, China. Electronic address:

Objective: Long non-coding RNA (lncRNA) has been playing an increasingly significant role in neuropathic pain (NP). This study aimed to investigate the clinical significance and mechanism of LncRNA ZNFX1 antisense RNA 1 (ZFAS1) in NP.

Methods: 92 patients with NP and 85 healthy controls were enrolled, and a rat NP model was constructed by chronic constrictive injury (CCI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!