Alternate copolymerization of diallylamine derivatives [(CHCH[double bond, length as m-dash]CH)NR; R = Me, (CH)PO(OEt), and CHPO(OEt)] (I)-maleic acid (MA) and (I·HCl)-SO pairs have been carried out thermally using ammonium persulfate initiator as well as UV radiation at a of 365 nm. The reactivity ratios of ≈0 for the monomers in each pair I-MA and I·HCl-SO ensured their alternation in each copolymer. However, numerous attempted terpolymerizations of I-MA-SO failed to entice MA to participate to any meaningful extent. In contrast to reported literature, only 1-2 mol% of MA was incorporated into the polymer chain mainly consisting of poly(I--SO). Quaternary diallyldialkylammonium chloride [(CH[double bond, length as m-dash]CH-CH)NRCl; R = Me, Et] (II) also, did not participate in II-MA-SO terpolymerizations. Poly((I, R = Me)--SO) III is a stimuli-responsive polyampholyte; its transformation under pH-induced changes to cationic, polyampholyte-anionic, and dianionic polyelectrolytes has been examined by viscosity measurements. The p of two carboxylic acid groups and NH in III has been determined to be 2.62, 5.59, and 10.1. PA III, evaluated as a potential antiscalant in reverse osmosis plants, at the concentrations of 5 and 20 ppm, imparted ≈100% efficiency for CaSO scale inhibition from its supersaturated solution for over 50 and 500 min, respectively, at 40 °C. The synthesis of PA III in excellent yields from cheap starting materials and its very impressive performance may grant PA III a prestigious place as an environment-friendly phosphate-free antiscalant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101235PMC
http://dx.doi.org/10.1039/c8ra08723gDOI Listing

Publication Analysis

Top Keywords

bond length
8
iii
5
scope sulfur
4
sulfur dioxide
4
dioxide incorporation
4
incorporation alkyldiallylamine-maleic
4
alkyldiallylamine-maleic acid-so
4
acid-so tercyclopolymer
4
tercyclopolymer alternate
4
alternate copolymerization
4

Similar Publications

A computational study of X-H···Y binary hydrogen-bonded complexes was undertaken to examine the red- and blue-shifting behavior of three model X-H proton donors interacting with a series of Lewis bases: Y = NH, NCLi, NCH, NCF, CH, BF, CO, N and Ne. Two of these proton donors, FArH and FCH, have blue-shifting tendencies, while the third, FH, has red-shifting tendencies. A perturbation theory model for frequency shifts that was derived many years ago was employed to partition the predicted frequency shift into the sum of two components, one dependent on the second derivative of the interaction energy with respect to X-H displacement and the other dependent on the X-H bond length change in the binary complex.

View Article and Find Full Text PDF

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

Quantum mechanics has proved to be suitable for the study of molecular systems. In particular, the Born-Oppenheimer approximation enables one to separate the motions of electrons and nuclei. In the case of diatomic molecules, this approximation leads to the so-called potential-energy function that provides the interaction between the two nuclei.

View Article and Find Full Text PDF

Phosphoric acid (H3PO4) doping is a widely employed strategy to facilitate anhydrous proton transport in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). However, significant H3PO4 leaching during long-term operation poses critical challenges to maintaining membrane stability and proton conductivity. Herein, H3PO4 is incorporated into positively charged nanochannels of quaternized covalent organic framework membranes (QACOFMs), leveraging strong electrostatic interactions and confinement effects to achieve exceptional H3PO4 retention under hydration conditions.

View Article and Find Full Text PDF

The reaction chemistry of an unprecedented 'inorganic cumulene' - featuring a five-atom BNBNB chain - towards C[double bond, length as m-dash]O (and related) multiple bonds is disclosed. In marked contrast to related all-carbon systems, the intrinsic polarity of the BNBNB chain (featuring electron-rich nitrogen and electron-deficient boron centres) enables metathesis chemistry with electrophilic heteroallenes such as CO and with organic carbonyl compounds. Transfer of the borylimide unit to [CO], [CS], [PP{(NDippCH)}] and [C(H)Ph] moieties generates (boryl)N[double bond, length as m-dash]C[double bond, length as m-dash]X systems (X = O, S, PP{(NDippCH)}, C(H)Ph), driven thermodynamically by B-O bond formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!