Robustness of subwavelength devices: a case study of cochlea-inspired rainbow sensors.

Proc Math Phys Eng Sci

Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA.

Published: June 2022

We derive asymptotic formulae describing how the properties of subwavelength devices are changed by the introduction of errors and imperfections. As a demonstrative example, we study a class of cochlea-inspired rainbow sensors. These are graded metamaterials which have been designed to mimic the frequency separation performed by the cochlea. The device considered here has similar dimensions to the cochlea and has a resonant spectrum that falls within the range of audible frequencies. We show that the device's properties (including its role as a signal filtering device) are stable with respect to small imperfections in the positions and sizes of the resonators. Additionally, under suitable assumptions, if the number of resonators is sufficiently large, then the device's properties are stable under the removal of a resonator.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185833PMC
http://dx.doi.org/10.1098/rspa.2021.0765DOI Listing

Publication Analysis

Top Keywords

subwavelength devices
8
cochlea-inspired rainbow
8
rainbow sensors
8
device's properties
8
robustness subwavelength
4
devices case
4
case study
4
study cochlea-inspired
4
sensors derive
4
derive asymptotic
4

Similar Publications

Precise and rapid disease detection is critical for controlling infectious diseases like COVID-19. Current technologies struggle to simultaneously identify viral RNAs and host immune antibodies due to limited integration of sample preparation and detection. Here, we present acoustofluidic integrated molecular diagnostics (AIMDx) on a chip, a platform enabling high-speed, sensitive detection of viral immunoglobulins [immunoglobulin A (IgA), IgG, and IgM] and nucleic acids.

View Article and Find Full Text PDF

A Refractive Index-Based Dual-Band Metamaterial Sensor Design and Analysis for Biomedical Sensing Applications.

Sensors (Basel)

January 2025

Department of Electronics and Communication Engineering, SRM University, Guntur 522240, Andhra Pradesh, India.

We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain.

View Article and Find Full Text PDF

Nanostructured dielectric metasurfaces offer unprecedented opportunities to control light-matter momentum exchange, and thereby the forces and torques that light can exert on matter. Here we introduce optical metasurfaces as components of ultracompact untethered microscopic metaspinners capable of efficient light-induced rotation in a liquid environment. Illuminated by weakly focused light, a metaspinner generates torque via photon recoil through the metasurfaces' ability to bend light towards high angles despite their sub-wavelength thickness, thereby creating orbital angular momentum.

View Article and Find Full Text PDF

Organic Metasurfaces with Contrasting Conducting Polymers.

Nano Lett

January 2025

Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.

Conducting polymers have emerged as promising active materials for metasurfaces due to their electrically tunable states and large refractive index modulation. However, existing approaches are often limited to infrared operation or single-polymer systems, restricting their versatility. In this Letter, we present organic metasurfaces featuring dual conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), to achieve contrasting dynamic optical responses at visible frequencies.

View Article and Find Full Text PDF

We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!