Ants are among the most successful organisms on Earth. It has been suggested that forming symbioses with nutrient-supplementing microbes may have contributed to their success, by allowing ants to invade otherwise inaccessible niches. However, it is unclear whether ants have evolved symbioses repeatedly to overcome the same nutrient limitations. Here, we address this question by comparing the independently evolved symbioses in Camponotus, Plagiolepis, Formica and Cardiocondyla ants. Our analysis reveals the only metabolic function consistently retained in all of the symbiont genomes is the capacity to synthesise tyrosine. We also show that in certain multi-queen lineages that have co-diversified with their symbiont for millions of years, only a fraction of queens carry the symbiont, suggesting ants differ in their colony-level reliance on symbiont-derived resources. Our results imply that symbioses can arise to solve common problems, but hosts may differ in their dependence on symbionts, highlighting the evolutionary forces influencing the persistence of long-term endosymbiotic mutualisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381600 | PMC |
http://dx.doi.org/10.1038/s41396-022-01256-1 | DOI Listing |
Syst Biol
January 2025
Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.
Obtaining a timescale for bacterial evolution is crucial to understand early life evolution but is difficult owing to the scarcity of bacterial fossils. Here, we introduce multiple new time constraints to calibrate bacterial evolution based on ancient symbiosis. This idea is implemented using a bacterial tree constructed with genes found in the mitochondrial lineages phylogenetically embedded within Proteobacteria.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
a β-proteobacterium, forms a nitrogen-fixing symbiosis with many species of the large legume genus as well as with common bean ( L.). are considered to have evolved nodulation independently from the well-studied α-proteobacteria symbionts of legumes.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Australian Institute of Marine Science, Townsville, Queensland, Australia.
Symbiotic cnidarians, such as sea anemones and corals, rely on their mutualistic microalgal partners (Symbiodiniaceae) for survival. Marine heatwaves can disrupt this partnership, and it has been proposed that introducing experimentally evolved, heat-tolerant algal symbionts could enhance host thermotolerance. To test this hypothesis, the sea anemone Exaiptasia diaphana (a coral model) was inoculated with either the heterologous wild type or heat-evolved algal symbiont, Cladocopium proliferum, and homologous wild-type Breviolum minutum.
View Article and Find Full Text PDFMicrobiology (Reading)
January 2025
Department of Zoology, University of British Columbia, Vancouver, Canada.
Microbiome-animal host symbioses are ubiquitous in nature. Animal-associated microbiomes can play a crucial role in host physiology, health and resilience to environmental stressors. As climate change drives rising global temperatures and increases the frequency of thermal extremes, microbiomes are emerging as a new frontier in buffering vulnerable animals against temperature fluctuations.
View Article and Find Full Text PDFPlants evolve diverse communication systems in adapting to complex and variable environments. Here, we examined the relationship between plant architecture, population density and inter-plant communication within tree species. We tested the hypothesis that trees of species with complex architecture or high population density (high population density: HPD) communicate among conspecifics via volatiles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!