Transcriptional changes of biochemical pathways in Meloidogyne incognita in response to non-fumigant nematicides.

Sci Rep

USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, 97330, USA.

Published: June 2022

Meloidogyne incognita is a destructive and economically important agricultural pest. Similar to other plant-parasitic nematodes, management of M. incognita relies heavily on chemical controls. As old, broad spectrum, and toxic nematicides leave the market, replacements have entered including fluensulfone, fluazaindolizine, and fluopyram that are plant-parasitic nematode specific in target and less toxic to applicators. However, there is limited research into their modes-of-action and other off-target cellular effects caused by these nematicides in plant-parasitic nematodes. This study aimed to broaden the knowledge about these new nematicides by examining the transcriptional changes in M. incognita second-stage juveniles (J2) after 24-h exposure to fluensulfone, fluazaindolizine, and fluopyram as well as oxamyl, an older non-fumigant nematicide. Total RNA was extracted and sequenced using Illumina HiSeq to investigate transcriptional changes in the citric acid cycle, the glyoxylate pathway, [Formula: see text]-fatty acid oxidation pathway, oxidative phosphorylation, and acetylcholine neuron components. Observed transcriptional changes in M. incognita exposed to fluopyram and oxamyl corresponded to their respective modes-of-action. Potential targets for fluensulfone and fluazaindolizine were identified in the [Formula: see text]-fatty acid oxidation pathway and 2-oxoglutarate dehydrogenase of the citric acid cycle, respectively. This study provides a foundation for understanding how potential nematicide resistance could develop, identifies cellular pathways as potential nematicide targets, and determines targets for confirming unknown modes-of-action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197979PMC
http://dx.doi.org/10.1038/s41598-022-14091-3DOI Listing

Publication Analysis

Top Keywords

transcriptional changes
16
fluensulfone fluazaindolizine
12
meloidogyne incognita
8
plant-parasitic nematodes
8
fluazaindolizine fluopyram
8
changes incognita
8
citric acid
8
acid cycle
8
[formula text]-fatty
8
text]-fatty acid
8

Similar Publications

NFKB1 as a key player in Tumor biology: from mechanisms to therapeutic implications.

Cell Biol Toxicol

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.

NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.

View Article and Find Full Text PDF

Chromatin Accessibility Mediated by CHROMATIN REMODELING 11 Promotes Chilling Tolerance in Rice.

Plant Physiol

January 2025

The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China.

Chromatin remodeling plays a crucial role in controlling gene transcription by modifying chromatin structure. However, the involvement of chromatin remodeling in plant stress responses, especially cold tolerance, through chromatin accessibility remains largely unexplored. Here, we report that rice (Oryza sativa L.

View Article and Find Full Text PDF

Light plays an important role in determining the L-ascorbate (AsA) pool size in plants, primarily through the transcriptional regulation of AsA metabolism-related genes. However, the specific mechanism of transcriptional induction responsible for light-dependent AsA biosynthesis remains unclear. In this study, we used a promoter sequence containing light-responsive motifs from GDP-L-galactose phosphorylase 2 (RrGGP2), a key gene involved in AsA overproduction in Rosa roxburghii fruits, to identify participating transcription factors.

View Article and Find Full Text PDF

Background: N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia.

View Article and Find Full Text PDF

RSK4 promotes the metastasis of clear cell renal cell carcinoma by activating RUNX1-mediated angiogenesis.

Cancer Biol Ther

December 2025

State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi'an, China.

Ribosomal S6 protein kinase 4 (RSK4), a member of the serine‒threonine kinase family, plays a vital role in the Ras‒MAPK pathway. This kinase is responsible for managing several cellular activities, including cell growth, proliferation, survival, and mobility. In this study, we observed higher RSK4 protein expression in clear cell renal cell carcinoma (ccRCC) than in normal kidney tissue, and the overexpression of RSK4 might predict poor outcomes for ccRCC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!