Patients supported by mechanical ventilation require frequent invasive blood gas samples to monitor and adjust the level of support. We developed a transparent and novel blood gas estimation model to provide continuous monitoring of blood pH and arterial CO in between gaps of blood draws, using only readily available noninvasive data sources in ventilated patients. The model was trained on a derivation dataset (1,883 patients, 12,344 samples) from a tertiary pediatric intensive care center, and tested on a validation dataset (286 patients, 4030 samples) from the same center obtained at a later time. The model uses pairwise non-linear interactions between predictors and provides point-estimates of blood gas pH and arterial CO along with a range of prediction uncertainty. The model predicted within Clinical Laboratory Improvement Amendments of 1988 (CLIA) acceptable blood gas machine equivalent in 74% of pH samples and 80% of PCO samples. Prediction uncertainty from the model improved estimation accuracy by 15% by identifying and abstaining on a minority of high-uncertainty samples. The proposed model estimates blood gas pH and CO accurately in a large percentage of samples. The model's abstention recommendation coupled with ranked display of top predictors for each estimation lends itself to real-time monitoring of gaps between blood draws, and the model may help users determine when a new blood draw is required and delay blood draws when not needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198060PMC
http://dx.doi.org/10.1038/s41598-022-13583-6DOI Listing

Publication Analysis

Top Keywords

blood gas
24
blood draws
12
blood
11
gas estimation
8
gaps blood
8
prediction uncertainty
8
uncertainty model
8
samples
7
model
7
gas
6

Similar Publications

Evaluating the effectiveness of handheld ultrasound in primary blast lung injury: a comprehensive study.

Sci Rep

January 2025

Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.

The incidence of blast injuries has been rising globally, particularly affecting the lungs due to their vulnerability. Primary blast lung injury (PBLI) is associated with high morbidity and mortality rates, while early diagnostic methods are limited. With advancements in medical technology, and portable handheld ultrasound devices, the efficacy of ultrasound in detecting occult lung injuries early remains unclear.

View Article and Find Full Text PDF

Introduction: Qualitative and quantitative testing of ethanol in samples is an important analytical procedure that provides accurate, precise, and reliable results. Given the complexity of the issue, obtaining a realistic picture of lifelong alcoholemia requires supporting blood ethanol findings with analyses of alternative samples, primarily vitreous humor (VH).

Objective: The objective of this study was to develop and validate a headspace gas chromatography with flame ionization detection (HS/GC-FID) method for determining ethanol concentration in VH.

View Article and Find Full Text PDF

Introduction: Opportunistic infections (IO) are infections of microbiota (fungi, viruses, bacteria, or parasites) that generally do not cause disease but turn into pathogens when the body's defense system is compromised. This can be triggered by various factors, one of which is due to a weakened immune system due to Diabetes Mellitus (DM), which increases the occurrence of opportunistic infections, especially in the oral cavity. Fungal (oral candidiasis) and viral (recurrent intraoral herpes) infections can occur in the oral cavity of DM patients.

View Article and Find Full Text PDF

pH remains the most important chemical parameter and must be monitored for positive outcomes in areas as different as cheese making and fertilisation (IVF). Where blood gas analysers enable patient monitoring, starter cultures in cheese manufacturing are still monitored using conventional pH electrodes. Here, we present a homogeneous multiwell plate sensor for monitoring pH, with the same sensitivity as a pH electrode.

View Article and Find Full Text PDF

miR-18a-5p/PXR/SREBP2 Was Involved in MAFLD Associated With Methyl Tert-Butyl Ether Among Petrol Station Workers.

Liver Int

February 2025

Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China.

Background: Metabolic associated fatty liver disease (MAFLD), previously defined as non-alcoholic fatty liver disease (NAFLD), has been shown to be closely related to many environmental pollutants. Lately, we found methyl tert-butyl ether (MTBE), a new environmental pollutant, could increase NAFLD risk in American adults, which still needs more population epidemiological studies to verify, and its pathogenic mechanism is not yet clear.

Methods: We conducted a cross-sectional study among petrol station workers, diagnosed their MAFLD according to internationally recognised diagnostic criteria, assessed the potential association of MTBE exposure with MAFLD risk, and explored the miR-18a-5p/PXR/SREBP2 pathway as possible pathogenic mechanisms in male Wistar rats and HepaRG cells treated with MTBE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!