A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual-bioaugmentation strategy to enhance the formation of algal-bacteria symbiosis biofloc in aquaculture wastewater supplemented with agricultural wastes as an alternative nutrient sources and biomass support materials. | LitMetric

This study performs an integrated evaluation of the formation and distribution of algal-bacterial bioflocs in aquaculture wastewater supplemented with agricultural waste, together with an assessment of their behavior in the microbial community and of the water quality of the system in which a new bioaugmentation strategy was applied. Results indicated that the dual bioaugmentation strategy via the consortium addition of bacteria and microalgae had the highest formation performance, providing the most compact biofloc structure (0.59 g/L), excellent settleability (71.91%), and a large particle diameter (4.25 mm). The fed-batch supplementation of molasses and rice bran, in terms of changes in the values of COD, NH, NO, and PO, stimulated the formation of biofloc through algal-bacterial bioflocs and microbe-rice bran complexes within a well-established microbial community. These findings provide new insight into the influence of bioaugmentation on the formation of an innovative algal-bacterial biofloc.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127469DOI Listing

Publication Analysis

Top Keywords

aquaculture wastewater
8
wastewater supplemented
8
supplemented agricultural
8
algal-bacterial bioflocs
8
microbial community
8
bioaugmentation strategy
8
formation
5
dual-bioaugmentation strategy
4
strategy enhance
4
enhance formation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!