Numerous harmful chemicals are introduced every year in the environment through anthropogenic and geological activities raising global concerns of their ecotoxicological effects and decontamination strategies. Biochar technology has been recognized as an important pillar for recycling of biomass, contributing to the carbon capture and bioenergy industries, and remediation of contaminated soil, sediments and water. This paper aims to critically review the application potential of biochar with a special focus on the synergistic and antagonistic effects on contaminant-degrading microorganisms in single and mixed-contaminated systems. Owing to the high specific surface area, porous structure, and compatible surface chemistry, biochar can support the proliferation and activity of contaminant-degrading microorganisms. A combination of biochar and microorganisms to remove a variety of contaminants has gained popularity in recent years alongside traditional chemical and physical remediation technologies. The microbial compatibility of biochar can be improved by optimizing the surface parameters so that toxic pollutant release is minimized, biofilm formation is encouraged, and microbial populations are enhanced. Biocompatible biochar thus shows potential in the bioremediation of organic contaminants by harboring microbial populations, releasing contaminant-degrading enzymes, and protecting beneficial microorganisms from immediate toxicity of surrounding contaminants. This review recommends that biochar-microorganism co-deployment holds a great potential for the removal of contaminants thereby reducing the risk of organic contaminants to human and environmental health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.119609 | DOI Listing |
PLoS One
December 2024
Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America.
Millions of tons of polyethylene terephthalate (PET) are produced each year, however only ~30% of PET is currently recycled in the United States. Improvement of PET recycling and upcycling practices is an area of ongoing research. One method for PET upcycling is chemical depolymerization (through hydrolysis or aminolysis) into aromatic monomers and subsequent biodegradation.
View Article and Find Full Text PDFAppl Soil Ecol
July 2023
Civil, Environmental, and Architectural Engineering, University of Kansas, 1530 W 15th St., Lawrence, KS 66045, United States of America.
Soil microorganisms play critical roles in the degradation of micro-and nano-pollutants, and the corresponding proteins and enzymes play roles in pollutant recognition, transportation, and degradation. Our ability to study these pathways from soil samples is often complicated by the complex processes involved in extracting proteins from soil matrices. This study aimed to develop a new protein soil extraction protocol that yielded active, intracellular enzymes from the perchlorate degradation pathway, particularly perchlorate reductase.
View Article and Find Full Text PDFFront Microbiol
February 2023
ExxonMobil Environmental and Property Solutions Company, Spring, TX, United States.
Leveraging the capabilities of microorganisms to reduce (degrade or transform) concentrations of pollutants in soil and groundwater can be a cost-effective, natural remedial approach to manage contaminated sites. Traditional design and implementation of bioremediation strategies consist of lab-scale biodegradation studies or collection of field-scale geochemical data to infer associated biological processes. While both lab-scale biodegradation studies and field-scale geochemical data are useful for remedial decision-making, additional insights can be gained through the application of Molecular Biological Tools (MBTs) to directly measure contaminant-degrading microorganisms and associated bioremediation processes.
View Article and Find Full Text PDFFront Microbiol
November 2022
Golder Associates USA Inc., Marlton, NJ, United States.
Microorganisms naturally present at environmental contaminated sites are capable of biodegrading, biotransforming, or removing contaminants in soil and groundwater through bioremediation processes. Cleanup strategies and goals for site remediation can be effectively achieved by bioremediation leveraging the capabilities of microorganisms to biotransform contaminants into lesser or non-toxic end products; however, reproducible success can be limited by inadequate design or performance monitoring. A group of biological analyses collectively termed molecular biological tools (MBTs) can be used to assess the contaminant-degrading capabilities and activities of microorganisms present in the environment and appropriately implement bioremediation approaches.
View Article and Find Full Text PDFSci Total Environ
December 2022
Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH 43606, United States; Department of Chemical Engineering, University of Toledo, Mail Stop 307, 3048 Nitschke Hall, Toledo, OH 43606, United States. Electronic address:
The application of bioaugmentation (i.e., injection of contaminant-degrading microorganisms) has shown its potential to remove harmful cyanotoxins like microcystin-LR (MC-LR) from drinking water sources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!