Three-Dimensional Monolithically Self-Grown Metal Oxide Highly Dense Nanonetworks as Free-Standing High-Capacity Anodes for Lithium-Ion Batteries.

ACS Appl Mater Interfaces

Department of Materials Science and Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.

Published: June 2022

Transition metal oxides (TMOs) have been widely studied as potential next-generation anode materials, owing to their high theoretical gravimetric capacity. However, to date, these anodes syntheses are plagued with time-consuming preparation processes, two-dimensional electrode fabrication, binder requirements, and short operational cycling lives. Here, we present a scalable single-step reagentless process for the synthesis of highly dense MnO-based nanonetwork anodes based on a simple thermal treatment transformation of low-grade steel substrates. The monolithic solid-state chemical self-transformation of the steel substrate results in a highly dense forest of MnO nanowires, which transforms the electrochemically inactive steel substrate into an electrochemically highly active anode. The proposed method, beyond greatly improving the current TMO performance, surpasses state-of-the-art commercial silicon anodes in terms of capacity and stability. The three-dimensional self-standing anode exhibits remarkably high capacities (>1500 mA h/g), a stable cycle life (>650 cycles), high Coulombic efficiencies (>99.5%), fast rate performance (>1.5 C), and high areal capacities (>2.5 mA h/cm). This novel experimental paradigm acts as a milestone for next-generation anode materials in lithium-ion batteries, and pioneers a universal method to transform different kinds of widely available, low-cost, steel substrates into electrochemically active, free-standing anodes and allows for the massive reduction of anode production complexity and costs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247978PMC
http://dx.doi.org/10.1021/acsami.2c05902DOI Listing

Publication Analysis

Top Keywords

highly dense
12
lithium-ion batteries
8
next-generation anode
8
anode materials
8
steel substrates
8
steel substrate
8
anodes
5
anode
5
three-dimensional monolithically
4
monolithically self-grown
4

Similar Publications

Land use and cover changes lead to fragmentation of the natural habitats of sand flies and modify the epidemiological profile of leishmaniasis. This process contributes to the infestation of adjacent rural settlements by vector sand fly species with different degrees of adaptation, promoting leishmaniasis outbreaks. This study aimed to assess land use and cover changes over a 12-year period and investigate the diversity and abundance of sand fly assemblages in the rural area of Codó, Maranhão State, Brazil.

View Article and Find Full Text PDF

Prediction of nitrate concentration and the impact of land use types on groundwater in the Nansi Lake Basin.

J Hazard Mater

January 2025

School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430074, China.

Groundwater faces a pervasive threat from anthropogenic nitrate contamination worldwide, particularly in regions characterized by intensive agricultural practices. This study examines groundwater quality in the Nansi Lake Basin (NSLB), emphasizing nitrate (NO-N) contamination. Utilizing 422 groundwater samples, it investigates hydrochemical dynamics and the impact of land use on groundwater composition.

View Article and Find Full Text PDF

The carbon dioxide (CO) capture and utilization strategy has emerged as an innovative and multifaceted approach to counteract carbon emissions. In this study, a highly porous muffin polyhedral barium (Ba) ̵ organic framework (BaTATB; HTATB = 4,4',4″--triazine-2,4,6-triyl-tribenzoic acid) was synthesized solvothermally. The three-dimensional honeycomb pore architectures were densely populated with Lewis acidic Ba(II) metal sites and basic nitrogen-rich triazines.

View Article and Find Full Text PDF

The Southern Ocean, a region highly vulnerable to climate change, plays a vital role in regulating global nutrient cycles and atmospheric CO via the biological carbon pump. Diatoms, photosynthetically active plankton with dense opal skeletons, are key to this process as their exoskeletons are thought to enhance the transfer of particulate organic carbon to depth, positioning them as major vectors of carbon storage. Yet conflicting observations obscure the mechanistic link between diatoms, opal and particulate organic carbon fluxes, especially in the twilight zone where greatest flux losses occur.

View Article and Find Full Text PDF

Background: Gastrointestinal (GI) cancers, particularly pancreatic cancer, are characterized by a dense stromal tumor microenvironment where cancer-associated fibroblasts (CAFs) predominate. CAFs comprise highly heterogeneous subpopulations with different functions, which can be both tumor-promoting and tumor-restraining. This systematic review and meta-analysis aims to comprehensively assess the impact of the CAF marker fibroblast-activation protein (FAP) expression on clinical outcomes in GI cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!