Herein, we examined the modulatory effects ofApocynum (APO) on Monosodium Glutamate (MSG)-induced oxidative damage on the brain tissue of rats after long-term consumption of blood serum components by biochemical assays, Fourier transform infrared spectroscopy(FTIR), and machine learning methods. Sprague-Dawley male rats were randomly divided into the Control, Control + APO, MSG, and MSG + APO groups (n = 8 per group). All administrations were made by oral gavage saline, MSG, or APO and they were repeated for 28 days of the experiments. Brain tissue and blood serum samples were collected and analyzed for measurement levels ofmalondialdehyde (MDA),glutathione (GSH),myeloperoxidase (MPO), superoxide dismutase (SOD) activity, and Spectroscopic analysis. After 29 days, the results were evaluated using machine learning (ML). The levels of MDA and MPO showed changes in the MSG and MSG + APO groups, respectively. Changes in the proteins and lipids were observed in the FTIR spectra of the MSG groups. Additionally, APO in these animals improved the FTIR spectra to be similar to those in the Control group. The accuracy of the FTIR results calculated by ML was 100%. The findings of this study demonstrate that Apocynin treatment protectsagainst MSG-induced oxidative damage by inhibitingreactive oxygen speciesand upregulatingantioxidant capacity, indicating its potential in alleviatingthe toxic effects of MSG.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121495DOI Listing

Publication Analysis

Top Keywords

machine learning
12
monosodium glutamate
8
msg-induced oxidative
8
oxidative damage
8
brain tissue
8
blood serum
8
msg msg + apo
8
msg + apo groups
8
ftir spectra
8
msg
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!