The central complex in the brain of insects provides a neural network for sensorimotor processing that is essential for spatial navigation and locomotion and plays a role in sleep control. Studies on the neurochemical architecture of the central complex have been performed especially in the fruit fly Drosophila melangoaster and the desert locust, Schistocerca gregaria. In several insect species, myoinhibitory peptides (MIPs) are involved in circadian control and sleep-wake regulation. To identify neurons that might underlie these functions, we investigated the distribution of MIPs in the central complex of the locust. In silico transcript analysis suggests the presence of eight different MIPs in the desert locust. Through immunolabeling, we identified five systems of central-complex neurons that express MIP-like peptides. Two systems constitute columnar neurons of the protocerebral bridge and the lower division of the central body, while the other three systems are columnar neurons (two systems) and tangential neurons (one system) of the upper division of the central body. The innervation pattern and cell count of two systems of columnar neurons revealed the existence of 18 instead of 16 columns of the protocerebral bridge. Immunostaining of preparations containing intracellularly stained single cells allowed us to further specify subtypes of labeled columnar neurons. Double-label experiments showed that three systems of MIP-immunostained columnar neurons are also locustatachykinin-immunoreactive. No colocalization was found with serotonin immunostaining. The data provide novel insights into the architecture of the locust central complex and suggest that MIPs play a prominent role within the central-complex network.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.25374DOI Listing

Publication Analysis

Top Keywords

central complex
20
columnar neurons
20
myoinhibitory peptides
8
peptides central
8
complex locust
8
locust schistocerca
8
schistocerca gregaria
8
desert locust
8
neurons
8
protocerebral bridge
8

Similar Publications

Liquid biomarkers are essential in trauma cases and critical care and offer valuable insights into the extent of injury, prognostic predictions, and treatment guidance. They can help assess the severity of organ damage (OD), assist in treatment decisions and forecast patient outcomes. Notably, small extracellular vesicles, particularly those involved in splenic trauma, have been overlooked.

View Article and Find Full Text PDF

Background: To identify the relationship between BMI or lipid metabolism and diabetic neuropathy using a Mendelian randomization (MR) study.

Methods: Body constitution-related phenotypes, namely BMI (kg/m), total cholesterol (TC), and triglyceride (TG), were investigated in this study. Despite the disparate origins of these data, all were accessible through the IEU OPEN GWAS database ( https://gwas.

View Article and Find Full Text PDF

Dbi1 is an oxidoreductase and an assembly chaperone for mitochondrial inner membrane proteins.

EMBO Rep

January 2025

LMU Munich, Biozentrum-Cell Biology, 82152, Planegg-Martinsried, Germany.

Import and assembly of mitochondrial proteins into multimeric complexes are essential for cellular function. Yet, many steps of these processes and the proteins involved remain unknown. Here, we identify a novel pathway for disulfide bond formation and assembly of mitochondrial inner membrane (IM) proteins.

View Article and Find Full Text PDF

Vangl is a planar cell polarity (PCP) core protein essential for aligned cell orientation along the epithelial plane perpendicular to the apical-basal direction, which is important for tissue morphogenesis, development and collective cell behavior. Mutations in Vangl are associated with developmental defects, including neural tube defects (NTDs), according to human cohort studies of sporadic and familial cases. The complex mechanisms underlying Vangl-mediated PCP signaling or Vangl-associated human congenital diseases have been hampered by the lack of molecular characterizations of Vangl.

View Article and Find Full Text PDF

Synaptoneurolipidomics: lipidomics in the study of synaptic function.

Trends Biochem Sci

January 2025

Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. Electronic address:

The brain is an exceptionally lipid-rich organ with a very complex lipid composition. Lipids are central in several neuronal processes, including membrane formation and fusion, myelin packing, and lipid-mediated signal transmission. Lipid diversity is associated with the evolution of higher cognitive abilities in primates, is affected by neuronal activity, and is instrumental for synaptic plasticity, illustrating that lipids are not static components of synaptic membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!