It is very challenging to design nanomaterials with both excellent antibacterial activity and cytocompatibility when facing bacterial infection. Here, inspired by antimicrobial peptides (AMPs), we fabricate carbon quantum dots (CQDs) derived from hydrophobic tryptophan and hydrophilic lysine or arginine (Lys/Trp-CQDs and Arg/Trp-CQDs), which possess amphipathic properties. These CQDs could effectively destroy bacterial membranes without developing resistance, inhibit biofilms formed by , and exhibit good biocompatibility. The antibacterial activities are caused by not only surface cationic structures and excess intracellular reactive oxygen species (ROS) generated by the CQDs but also the effects of the surface hydrophobic groups. These combined mechanisms of actions lead to bacterial membrane disruption, which raises the hope for combating bacterial infection without concern about drug resistance. What's more, the effect of amphiphilicity on balancing sterilization with biocompatibility expands the research ideas for developing available antibacterial nanomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.2c00292 | DOI Listing |
J Fluoresc
January 2025
Chongqing College of Mobile Communication, Chongqing, 401520, China.
In this study, a simple and efficient method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) has been developed through a one-step hydrothermal process using hedyotis diffusa willd. The morphology, chemical composition, and optical properties of the resulting N-CQDs were thoroughly characterized. The synthesized N-CQDs exhibited a spherical shape with an average particle size of 4.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Universidade Federal de Santa Maria, Departamento de Física, Santa Maria, RS, 97105-900, BRAZIL.
The study of emerging contaminants (ECs) in water resources has garnered significant attention due to their potential risks to human health and the environment. This review examines the contribution from computational approaches, focusing on the application of machine learning (ML) and molecular dynamics (MD) simulations to understand and optimize experimental applications of ECs adsorption on carbon-based nanomaterials. Condensed matter physics plays a crucial role in this research by investigating the fundamental properties of materials at the atomic and molecular levels, enabling the design and engineering of materials optimized for contaminant removal.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China.
Perovskite quantum dots (PQDs) show promise in light-emitting diodes (LEDs). However, near-infrared (NIR) LEDs employing PQDs exhibit inferior external quantum efficiency related to the PQD emitting in the visible range. One fundamental issue arises from the PQDs dynamic surface: the ligand loss and ions migration to the interfacial sites serve as quenching centers, resulting in trap-assisted recombination and carrier loss.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China. Electronic address:
In this study, a novel nitrogen-doped carbon quantum dot/oxidized gum arabic-gelatin-based fluorescent probe (NAH) was prepared using gelatin (GL) and gum arabic (AG) biomolecules. The primary network structure of this hydrogel consisted of polyacrylamide (PAM), while a secondary network structure was constructed between oxidized gum arabic and gelatin through the reaction of the Schiff base, which significantly enhanced the mechanical properties, the stress and strain of NAH reached 266.47 KPa and 2175.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900 São Paulo, Brazil.
Polycyclic aromatic hydrocarbons (PAHs) exhibit intriguing characteristics that position them as promising candidates for advancements in organic semiconductor technologies. Notably, tetracene finds substantial utility in Electronics due to its application in organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). The strategic introduction of an isoelectronic boron-nitrogen (B,N) pair to replace a carbon-carbon pair in acenes introduces changes in the electronic structure, allowing for the controlled modulation of diradical characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!