Falcons are diverse birds of cultural and economic importance. They have undergone major lineage-specific chromosomal rearrangements, resulting in greatly-reduced chromosome counts relative to other birds. Here, we use 10X Genomics linked reads to provide new high-contiguity genomes for two gyrfalcons, a saker falcon, a lanner falcon, three subspecies of peregrine falcons, and the common kestrel. Assisted by a transcriptome sequenced from 22 gyrfalcon tissues, we annotate these genomes for a variety of genomic features, estimate historical demography, and then investigate genomic equilibrium in the context of falcon-specific chromosomal rearrangements. We find that falcon genomes are not in AT-GC equilibrium with a bias in substitutions towards higher AT content; this bias is predominantly but not exclusively driven by hypermutability of CpG sites. Small indels and large structural variants were also biased towards insertions rather than deletions. Patterns of disequilibrium were linked to chromosomal rearrangements: falcons have lost GC content in regions that have fused to larger chromosomes from microchromosomes and gained GC content in regions of macrochromosomes that have translocated to microchromosomes. Inserted bases have accumulated on regions ancestrally belonging to microchromosomes, consistent with insertion-biased gene conversion. We also find an excess of interspersed repeats on regions of microchromosomes that have fused to macrochromosomes. Our results reveal that falcon genomes are in a state of flux. They further suggest that many of the key differences between microchromosomes and macrochromosomes are driven by differences in chromosome size, and indicate a clear role for recombination and biased-gene-conversion in determining genomic equilibrium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214253 | PMC |
http://dx.doi.org/10.1093/gbe/evac090 | DOI Listing |
G3 (Bethesda)
January 2025
Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
Haplotyped-resolved phased assemblies aim to capture the full allelic diversity in heterozygous and polyploid species to enable accurate genetic analyses. However, building non-collapsed references still presents a challenge. Here, we used long-range interaction Hi-C reads (high-throughput chromatin conformation capture) and HiFi PacBio reads to assemble the genome of the apomictic cultivar Basilisks from Urochloa decumbens (2n = 4x = 36), an outcrossed tetraploid Paniceae grass widely cropped to feed livestock in the tropics.
View Article and Find Full Text PDFInt J Cancer
January 2025
Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
An aggressive subtype of acute myeloid leukemia (AML) is caused by enhancer hijacking resulting in MECOM overexpression. Several chromosomal rearrangements can lead to this: the most common (inv(3)/t(3;3)) results in a hijacked GATA2 enhancer, and there are several atypical MECOM rearrangements involving enhancers from other hematopoietic genes. The set of enhancers which can be hijacked by MECOM can also be hijacked by BCL11B.
View Article and Find Full Text PDFSci Rep
January 2025
Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
Copy number variation (CNV) of the amyloid-β precursor protein gene (APP) is a known cause of autosomal dominant Alzheimer disease (ADAD), but de novo genetic variants causing ADAD are rare. We report a mother and daughter with neuropathologically confirmed definite Alzheimer disease (AD) and extensive cerebral amyloid angiopathy (CAA). Copy number analysis identified an increased number of APP copies and genome sequencing (GS) revealed the underlying complex genomic rearrangement (CGR) including a triplication of APP with two unique breakpoint junctions (BPJs).
View Article and Find Full Text PDFZool Res
January 2025
Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China. E-mail:
Avian genomes exhibit compact organization and remarkable chromosomal stability. However, the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored. This study generated a diploid genome assembly for the golden pheasant ( ), a species distinguished by the vibrant plumage of males.
View Article and Find Full Text PDFNat Commun
January 2025
CIRAD, UMR AGAP Institut, Montpellier, France.
Hybridization between wild Musa species and subspecies from Southeast Asia is at the origin of cultivated bananas. The genomes of these cultivars are complex mosaics involving nine genetic groups, including two previously unknown contributors. This study provides continuous genome assemblies for six wild genetic groups, one of which represents one of the unknown ancestor, identified as M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!