A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aberrant induction of p19Arf-mediated cellular senescence contributes to neurodevelopmental defects. | LitMetric

Aberrant induction of p19Arf-mediated cellular senescence contributes to neurodevelopmental defects.

PLoS Biol

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.

Published: June 2022

Valproic acid (VPA) is a widely prescribed drug to treat epilepsy, bipolar disorder, and migraine. If taken during pregnancy, however, exposure to the developing embryo can cause birth defects, cognitive impairment, and autism spectrum disorder. How VPA causes these developmental defects remains unknown. We used embryonic mice and human organoids to model key features of VPA drug exposure, including exencephaly, microcephaly, and spinal defects. In the malformed tissues, in which neurogenesis is defective, we find pronounced induction of cellular senescence in the neuroepithelial (NE) cells. Critically, through genetic and functional studies, we identified p19Arf as the instrumental mediator of senescence and microcephaly, but, surprisingly, not exencephaly and spinal defects. Together, these findings demonstrate that misregulated senescence in NE cells can contribute to developmental defects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197032PMC
http://dx.doi.org/10.1371/journal.pbio.3001664DOI Listing

Publication Analysis

Top Keywords

cellular senescence
8
developmental defects
8
spinal defects
8
defects
6
aberrant induction
4
induction p19arf-mediated
4
p19arf-mediated cellular
4
senescence
4
senescence contributes
4
contributes neurodevelopmental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!