Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation. Featured by its exceptional thermal conductivity, graphene is an ideal functional filler for fabricating thermally conductive polymer composites to provide efficient thermal management. Extensive studies have been focusing on constructing graphene networks in polymer composites to achieve high thermal conductivities. Compared with conventional composite fabrications by directly mixing graphene with polymers, preconstruction of three-dimensional graphene networks followed by backfilling polymers represents a promising way to produce composites with higher performances, enabling high manufacturing flexibility and controllability. In this review, we first summarize the factors that affect thermal conductivity of graphene composites and strategies for fabricating highly thermally conductive graphene/polymer composites. Subsequently, we give the reasoning behind using preconstructed three-dimensional graphene networks for fabricating thermally conductive polymer composites and highlight their potential applications. Finally, our insight into the existing bottlenecks and opportunities is provided for developing preconstructed porous architectures of graphene and their thermally conductive composites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198159 | PMC |
http://dx.doi.org/10.1007/s40820-022-00878-6 | DOI Listing |
J Exp Biol
January 2025
Grupo de Ecología Fisiológica y del Comportamiento. Instituto de Investigaciones Marinas y Costeras (IIMyC). CONICET - Universidad Nacional de Mar del Plata, Argentina.
Animal thermoregulation may have significant costs and compete directly or indirectly with other energetically demanding processes, such as immune function. Although the subterranean environment is characterized by thermally-stable conditions, small changes in ambient temperature could be critical in shaping immunity. However, little is known about the effects of ambient temperature, in naturally varying ranges, on immunity of wild species.
View Article and Find Full Text PDFHeliyon
January 2025
Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for High Performance Ceramics, 8600, Dübendorf, CH, Switzerland.
Since the 1950s, the woodcutting industry has relied heavily on tungsten carbide (WC) cutting tools to overcome the challenges posed by the complex structure of wood, including hard knots and abrasive elements such as sand and tannic acids. These demands require cutting tools with superior thermal conductivity and mechanical properties. However, the rising cost of WC materials has prompted the search for alternative solutions.
View Article and Find Full Text PDFFront Nutr
January 2025
Department of BioSciences, School of Bio Science and Technology (SBST), Vellore Institute of Technology, Vellore, India.
Consumption of plant-based food is steadily increasing and follows an augmented trend owing to their nutritive, functional, and energy potential. Different bioactive fractions, such as phenols, flavanols, and so on, contribute highly to the nutritive profile of food and are known to have a sensitivity toward higher temperatures. This limits the applicability of traditional thermal treatments for plant products, paving the way for the advancement of innovative and non-thermal techniques such as pulsed electric field, microwave, ultrasound, cold plasma, and high-pressure processing.
View Article and Find Full Text PDFFront Microbiol
January 2025
Laboratory of Molecular Biotechnology, National Center for Biotechnology, Astana, Kazakhstan.
fungal species are considered major plant pathogens, infecting various crops and resulting in significant agricultural losses. Additionally, these species can contaminate grain with multiple mycotoxins that are harmful to humans and animals. Efficient pest management relies on timely detection and identification of phytopathogens in plant and grain samples, facilitating prompt selection of a crop protection strategy.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China.
With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a HO-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed HO at the inflammatory site to produce O, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!