Glassy phases of framework materials feature unique and tunable properties that are advantageous for gas separation membranes, solid electrolytes, and phase-change memory applications. Here, we report a new guanidinium organosulfonate hydrogen-bonded organic framework (HOF) that melts and vitrifies below 100 °C. In this low-temperature regime, non-covalent interactions between guest molecules and the porous framework become a dominant contributor to the overall stability of the structure, resulting in guest-dependent melting, glass, and recrystallization transitions. Through simulations and X-ray scattering, we show that the local structures of the amorphous liquid and glass phases resemble those of the parent crystalline framework.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c02918 | DOI Listing |
Langmuir
January 2025
Department of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
The increasing demand for energy in cooling systems due to global warming presents a significant challenge. Conventional air-conditioning methods exacerbate climate change by contributing to heightened carbon emissions. Glass facades, renowned in modern architecture for their versatility and aesthetic appeal, inadvertently trap solar radiation, resulting in heat buildup and the greenhouse effect.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 PR China. Electronic address:
Red light emitting perovskite quantum dot (PQD) glass, with narrow-band emission and excellent stability, holds great potential for applications in liquid crystal displays. However, its low photoluminescence quantum yield (PLQY) remains the biggest obstacle limiting its practical application. Additionally, the mechanism behind the enhancement of the PLQY is not well understood, which restricts the further improvement of the PLQY in red light emitting PQD glass.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149, Münster, Germany.
As a phase change material (PCM), antimony exhibits a set of desirable properties that make it an interesting candidate for photonic memory applications. These include a large optical contrast between crystalline and amorphous solid states over a wide wavelength range. Switching between the states is possible on nanosecond timescales by applying short heating pulses.
View Article and Find Full Text PDFMater Adv
January 2025
Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan. Electronic address:
Background: Ambient ionization mass spectrometry (MS) has attracted significant attention due to its simplicity and ease of operation. Contactless, or field-induced, ionization is one of the ambient ionization techniques. In this approach, no direct electrical contact or additional voltage is required on the ionization-assisted substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!