Pulmonary arterial hypertension (PAH) often results in death from right ventricular failure (RVF). NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3)-macrophage activation may promote RVF in PAH. Evaluating the contribution of the NLRP3 inflammasome in RV macrophages to PAH RVF. Rats with decompensated RV hypertrophy (monocrotaline [MCT] and Sugen-5416 hypoxia [SuHx]) were compared with compensated RV hypertrophy rats (pulmonary artery banding). Echocardiography and right heart catheterization were performed. Macrophages, atrial natriuretic peptides, and fibrosis were evaluated by microscopy or flow cytometry. NLRP3 inflammasome activation and cardiotoxicity were confirmed by immunoblot and strategies. MCT rats were treated with SC-144 (a GP130 antagonist) or MCC950 (an NLRP3 inhibitor). Macrophage-NLRP3 activity was evaluated in patients with PAH RVF. Macrophages, fibrosis, and atrial natriuretic peptides were increased in MCT and SuHx RVs but not in left ventricles or pulmonary artery banding rats. Although MCT RV macrophages were inflammatory, lung macrophages were antiinflammatory. CCR2 macrophages (monocyte-derived) were increased in MCT and SuHx RVs and highly expressed NLRP3. The macrophage-NLRP3 pathway was upregulated in patients with PAH with decompensated RVs. Cultured MCT monocytes showed NLRP3 activation, and in coculture experiments resulted in cardiomyocyte mitochondrial damage, which MCC950 prevented. , MCC950 reduced NLRP3 activation and regressed pulmonary vascular disease and RVF. SC-144 reduced RV macrophages and NLRP3 content, prevented STAT3 (signal transducer and activator of transcription 3) activation, and improved RV function without regressing pulmonary vascular disease. NLRP3-macrophage activation occurs in the decompensated RV in preclinical PAH models and patients with PAH. Inhibiting GP130 or NLRP3 signaling improves RV function. The concept that PAH RVF results from RV inflammation rather than solely from elevated RV afterload suggests a new therapeutic paradigm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9716901 | PMC |
http://dx.doi.org/10.1164/rccm.202110-2274OC | DOI Listing |
Am J Physiol Heart Circ Physiol
December 2024
Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
Right ventricular dysfunction (RVD) portends increased death risk for heart failure (HF) and pulmonary arterial hypertension (PAH) patients, regardless of left ventricular function or disease etiology. In both, RVD arises from chronic RV pressure overload and represents advanced cardiopulmonary disease. RV remodeling responses and survival rates of patients, however, differ by sex.
View Article and Find Full Text PDFBackground: Right ventricular dysfunction (RVD) portends increased death risk for heart failure (HF) and pulmonary arterial hypertension (PAH) patients, regardless of left ventricular function or etiology. In both, RVD arises from the chronic RV pressure overload, and represents advanced cardiopulmonary disease. RV remodeling responses and survival rates of HF and PAH patients, however, differ by sex.
View Article and Find Full Text PDFHeliyon
November 2023
Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, United States.
Background: Ketone bodies are pleotropic metabolites that play important roles in multiple biological processes ranging from bioenergetics to inflammation regulation via suppression of the NLRP3 inflammasome, and epigenetic modifications. Ketone bodies are elevated in left ventricular failure (LVF) and multiple approaches that increase ketone concentrations exert advantageous cardiac effects in rodents and humans. However, the relationships between ketone bodies and right ventricular failure (RVF) are relatively unexplored.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
February 2024
Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China.
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterised by elevated pulmonary pressure, right ventricular failure (RVF) and ultimately death. Aggressive treatment of RVF is considered an important therapeutic strategy to treat PAH. Previous studies have indicated that betaine may be may a promising therapeutic approach for PAH-induced RVF.
View Article and Find Full Text PDFKetone bodies are pleotropic metabolites that play important roles in multiple biological processes ranging from bioenergetics to inflammation regulation via suppression of the NLRP3 inflammasome, and epigenetic modifications. Ketone bodies are elevated in left ventricular failure (LVF) and multiple approaches that increase ketone concentrations exert advantageous cardiac effects in rodents and humans. However, the relationships between ketone bodies and right ventricular failure (RVF) are relatively unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!