Pectin is a polysaccharide extracted from various plants, such as apples, oranges, lemons, and it possesses some beneficial effects on human health, including being hypoglycemic and hypocholesterolemic. Therefore, pectin is used in various pharmaceutical and biomedical applications. Meanwhile, its low mechanical strength and fast degradation rate limit its usage as drug delivery devices and tissue engineering scaffolds. To enhance these properties, it can be modified or combined with other organic molecules or polymers and/or inorganic compounds. These materials can be prepared as nano sized drug carriers in the form of spheres, capsules, hydrogels, self assamled micelles, etc., for treatment purposes (mostly cancer). Different composites or blends of pectin can also be produced as membranes, sponges, hydrogels, or 3D printed matrices for tissue regeneration applications. This review is concentrated on the properties of pectin based materials and focus especially on the utilization of these materials as drug carriers and tissue engineering scaffolds, including 3D printed and 3D bioprinted systems covering the studies in the last decade and especially in the last 5 years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2022.2088525 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!