Changes in the rumen microbiota community in ketosis cows during propylene glycol treatment.

Food Funct

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.

Published: July 2022

Ketosis, a common metabolic disorder in dairy cattle, occurs during early lactation and leads to higher concentrations of non-esterified fatty acids (NEFAs) and β-hydroxybutyrate (BHBA), and is generally believed to be caused by excessive negative energy balance (NEB). Propylene glycol (PG), a gluconeogenic precursor, has been proved to promote gluconeogenesis and alleviate NEB. Oral administration of PG is widely considered one of the most effective therapeutic options for treating ketosis. Thus, in this study, we assessed the effects of PG on rumen microbiota 16S rDNA analysis. The results show that one dose (500 mL) of PG treatment could rapidly reduce the blood BHBA level in ketosis cows by increasing the level and proportion of propionate in the rumen. Meanwhile, PG also had certain effects on the rumen bacterial community. Compared with before treatment, the relative abundances of , and increased significantly, while those of , and significantly decreased. LEfSe analysis revealed that after PG treatment, only was enriched in the rumen fluid at the genus level. In conclusion, the present study indicates that ketosis is accompanied by alterations in the rumen microbiota community. PG treatment changes the composition of rumen microbiota to a healthier state and contributes to rapid recovery from ketosis. These results support the usage of PG for treating such metabolic diseases that challenge high-yield cows due to their minimized cost and maximized safety without any adverse events.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1fo03800aDOI Listing

Publication Analysis

Top Keywords

rumen microbiota
16
microbiota community
8
ketosis cows
8
propylene glycol
8
effects rumen
8
ketosis
6
rumen
6
treatment
5
changes rumen
4
microbiota
4

Similar Publications

Alfalfa silage due to its high protein can lead to easier feeding management, but its high proportion of rumen-degradable protein can reduce rumen nitrogen utilization. Nevertheless, increasing dietary energy can enhance ruminal microbial protein synthesis. Thirty-two Suffolk female sheep were used in this study, with a 2 × 2 factorial arrangement of treatment.

View Article and Find Full Text PDF

Effect of Spirulina on the Rumen Microbiota and Serum Biochemical Parameters of Lambs.

Microorganisms

December 2024

Key Laboratory of Forage Cultivation, Processing and Highly Efficient Utilization of Ministry of Agriculture and Rural Affairs, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010019, China.

Spirulina () is rich in a variety of fermentable fibers and prebiotics, which can promote the proliferation of beneficial flora in the intestinal tract of ruminants and optimize the balance of microorganisms in the rumen. The aim of this study was to evaluate whether dietary supplementation with Spirulina has a beneficial effect on the rumen microbial community and serum indices in lambs. For this purpose, 36 lambs with a mean weight of 21.

View Article and Find Full Text PDF

Feed efficiency significantly impacts the economics of beef production and is influenced by biological and environmental factors. The rumen microbiota plays a crucial role in efficiency, with studies increasingly focused on its relationship with different rearing systems. This study analyzed 324 rumen samples from bulls and steers categorized as high and low efficiency based on residual feed intake.

View Article and Find Full Text PDF

This study hypothesized that combining oregano essential oil () and yeast cultures (s) would modulate rumen microbiota to promote gastrointestinal homeostasis and function. Twenty-four newborn, healthy, disease-free, crossbred Simmental male calves (birth weight ≥ 35 kg) were assigned to one of four treatments based on birth data. Treatments were as follows: (1) Control (), calves fed calf starter without additives; (2) , calves fed calf starter containing 60 mg/kg body weight () of OEO per day; (3) s, calves fed calf starter containing 45 mg/kg BW of YC per day; and (4) , calves fed calf starter with OEO (60 mg/kg, BW) and YC (45 mg/kg, BW) combination.

View Article and Find Full Text PDF

The aim of this study is to determine the effects of a high-concentrate diet on growth performance, serum biochemical indexes, and rumen microbiota in house-fed yaks. Sixteen male yaks (body weight, 151.73 ± 14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!