Characterization and tuning of the porosity of amorphous starch materials are important for many applications, including controlled release of encapsulated proteins. The porosities of these materials in dry and hydrated states can have different physicochemical origins and properties. Here, porosities of dry cross-linked starch microspheres and their hydration-induced transformations were characterized by small angle X-ray scattering, scanning electron and optical microscopies, thermogravimetric analysis, sorption calorimetry, nitrogen sorption, and helium-pycnometry. The analyses revealed that dry microspheres consist of porous cores with pore diameters below 100 nm and shells which appeared to be denser but contained wider pores (100-300 nm). The outer crust of the microspheres shell is non-porous, which restricts diffusion of nitrogen, water, and ethanol. Partial hydration triggered an irreversible collapse of dry porosity at 12 wt% water. Further hydration resulted in interfacial changes and promoted wet porosity, related to characteristic distances between polymer chains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2022.119542 | DOI Listing |
Carbohydr Polym
March 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China. Electronic address:
Hyperuricemia-related diabetic wounds are notoriously difficult to treat due to elevated uric acid (UA) levels, excessive reactive oxygen species (ROS), and chronic inflammation. Current therapies often fail to address these underlying causes, underscoring the need for innovative approaches that not only clear UA but also mitigate inflammation and promote tissue regeneration. In this study, we developed a polyrotaxane-based microsphere (HPR MS) system conjugated with 4,5-diamino-2-thiouracil (DT) to achieve high-affinity UA clearance without increasing cytotoxicity.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Vascular and Interventional Radiology Department, Cardarelli Hospital, Via A. Cardarelli 9, 80131 Naples, Italy.
Objectives: This study aims to report on the application of degradable starch microspheres to provide flow diversion by means of temporary embolization of healthy tissues in oncological endovascular procedures when tumor feeding vessels are not selectively accessible.
Methods: This is a multicenter retrospective analysis of patients undergoing visceral embolization procedures of malignancies. The inclusion criteria were as follows: flow diversion performed by injection of degradable starch microspheres, visceral embolization procedures with unfeasible superselective catheterism of the target, and a malignant pathology.
Waste Manag
December 2024
Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Electronic address:
Eur Radiol
December 2024
Clinic of Radiology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149, Münster, Germany.
Objectives: Despite increasing interest, prospective data on the use of degradable starch microsphere-transarterial chemoembolization (DSM-TACE) in the management of patients with unresectable HCC are still scarce. The objective of the HepaStar study was to collect prospective safety and effectiveness data in a prospective multicenter observational study.
Materials And Methods: Between January 2017 and December 2022, consecutive participants with unresectable or recurrent HCC treated with DSM-TACE as standard of care at 6 participating centers in Europe were enrolled.
Mater Today Bio
December 2024
Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
Hepatocellular carcinoma (HCC) is a common and deadly cancer, often diagnosed at advanced stages, limiting surgical options. Transcatheter arterial chemoembolization (TACE) is a primary treatment for inoperable and involves the use of drug-eluting microspheres to slowly release chemotherapy drugs. However, patient responses to TACE vary, with some experiencing tumor progression and recurrence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!