A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The graded novelty encoding task: Novelty gradually improves recognition of visual stimuli under incidental learning conditions. | LitMetric

It has been argued that novel compared to familiar stimuli are preferentially encoded into memory. Nevertheless, treating novelty as a categorical variable in experimental research is considered simplistic. We highlight the dimensional aspect of novelty and propose an experimental design that manipulates novelty continuously. We created the Graded Novelty Encoding Task (GNET), in which the difference between stimuli (i.e. novelty) is parametrically manipulated, paving the way for quantitative models of novelty processing. We designed an algorithm which generates visual stimuli by placing colored shapes in a grid. During the familiarization phase of the task, we repeatedly presented five pictures to the participants. In a subsequent incidental learning phase, participants were asked to differentiate between the "familiars" and novel images that varied in the degree of difference to the familiarized pictures (i.e. novelty). Finally, participants completed a surprise recognition memory test, where the novel stimuli from the previous phase were interspersed with distractors with similar difference characteristics. We numerically expressed the differences between the stimuli to compute a dimensional indicator of novelty and assessed whether it predicted recognition memory performance. Based on previous studies showing the beneficial effect of novelty on memory formation, we hypothesized that the more novel a given picture was, the better subsequent recognition performance participants would demonstrate. Our hypothesis was confirmed: recognition performance was higher for more novel stimuli. The GNET captures the continuous nature of novelty, and it may be useful in future studies that examine the behavioral and neurocognitive aspects of novelty processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250520PMC
http://dx.doi.org/10.3758/s13428-022-01891-8DOI Listing

Publication Analysis

Top Keywords

novelty
12
graded novelty
8
novelty encoding
8
encoding task
8
visual stimuli
8
incidental learning
8
novelty processing
8
recognition memory
8
novel stimuli
8
recognition performance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!