We demonstrate a nanostructure layer made of NiFe (permalloy:Py) thin film conjugated MoS nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS from a single solution where ionic Ni and Fe and MoS flakes co-exist. Synthesized thin films with MoS flakes show increasing coercivity and enhancement in magneto-optical Kerr effect. Ferromagnetic resonance linewidth as well as the damping parameter increaseed significantly compared to that of the Py layer due to the presence of MoS. Raman spectroscopy and elemental mapping is used to show the quality of MoS within the Py thin film. Our synthesis method promises new opportunities for electrochemical production of functional spintronic-based devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192644PMC
http://dx.doi.org/10.1038/s41598-022-14060-wDOI Listing

Publication Analysis

Top Keywords

thin films
8
thin film
8
mos flakes
8
mos
7
magnetic nife
4
thin
4
nife thin
4
films composing
4
composing mos
4
mos nanostructures
4

Similar Publications

A Zn-doped SbTe flexible thin film with decoupled Seebeck coefficient and electrical conductivity band engineering.

Chem Sci

January 2025

Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong 518060 China

SbTe-based flexible thin films can be utilized in the fabrication of self-powered wearable devices due to their huge potential in thermoelectric performance. Although doping can significantly enhance the power factor value, the process of identifying suitable dopants is typically accompanied by numerous repeating experiments. Herein, we introduce Zn doping into thermally diffused p-type SbTe flexible thin films with a candidate dopant validated using the first-principles calculations.

View Article and Find Full Text PDF

A soda lime glass substrate is used for fabricating CuZnSnS (CZTS) thin films using copper (II) sulfide (CuS), zinc sulfide (ZnS), and tin sulfide (SnS) targets using an advanced co-sputtering deposition process. Following that, the films are annealed at 470 °C without sulfur (S). An algorithm based on the deposition rate of the previously specified targets set the co-sputtering condition, which maintains a deposition pressure of 5, 10, 15, and 20 mTorr.

View Article and Find Full Text PDF

We theoretically demonstrate that ponderomotive interactions near the electron cross-over can be used for aberration correction in ultrafast electron microscopes. Highly magnified electron shadow images from SiN thin films are utilized to visualize the distortions induced by spherical aberrations. Our simulations of electron-light interactions indicate that spherical aberrations can be compensated resulting in an aberration-free angle of 8.

View Article and Find Full Text PDF

Epsilon-near-zero (ENZ) materials, i.e., materials with a vanishing real part of the permittivity, have become an increasingly desirable platform for exploring linear and nonlinear optical phenomena in nanophotonic and on-chip environments.

View Article and Find Full Text PDF

Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!