AI Article Synopsis

  • LATE-NC and ADNC are both linked to significant cognitive decline in older adults, but the prevalence of LATE-NC in relation to ADNC is still unclear.
  • A study analyzed data from 6,196 participants across various countries, finding that 43% were cognitively normal and 42% had dementia, which aligns with expected statistics for this age group.
  • Approximately 39.4% of participants had autopsy-confirmed LATE-NC, with higher rates in those with frequent amyloid plaques, indicating a potential relationship between these two conditions.*

Article Abstract

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer's disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese-American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia-broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with "frequent" neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aβ phase = 0 (lacking detectable Aβ plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer's disease neuropathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552938PMC
http://dx.doi.org/10.1007/s00401-022-02444-1DOI Listing

Publication Analysis

Top Keywords

neuropathologic change
12
alzheimer's disease
12
neuritic amyloid
12
late-nc
11
disease neuropathology
8
data
8
cognitive impairment
8
prevalence late-nc
8
late-nc full
8
clinical data
8

Similar Publications

Multi-scale Analysis Reveals Hippocampal Subfield Vulnerabilities to Chronic Cortisol Overexposure: Evidence from Cushing's Disease.

Biol Psychiatry Cogn Neurosci Neuroimaging

January 2025

Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, PR China. Electronic address:

Background: Chronic cortisol overexposure plays a significant role in the development of neuropathological changes associated with neuropsychiatric and neurodegenerative disorders. The hippocampus, the primary target of cortisol, may exhibit characteristic regional responses due to its internal heterogeneity. This study explores structural and functional alterations of hippocampal subfields in Cushing's disease (CD), an endogenous model of chronic cortisol overexposure.

View Article and Find Full Text PDF

Plasma S100β is a predictor for pathology and cognitive decline in Alzheimer's disease.

Fluids Barriers CNS

January 2025

Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.

Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.

Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.

View Article and Find Full Text PDF

Neuropathological contributions to grey matter atrophy and white matter hyperintensities in amnestic dementia.

Alzheimers Res Ther

January 2025

Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Crta M40, km38, Madrid, 28223, Spain.

Background: Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes.

Methods: In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies.

View Article and Find Full Text PDF

Stereo-seq of the prefrontal cortex in aging and Alzheimer's disease.

Nat Commun

January 2025

Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.

Aging increases the risk for Alzheimer's disease (AD), driving pathological changes like amyloid-β (Aβ) buildup, inflammation, and oxidative stress, especially in the prefrontal cortex (PFC). We present the first subcellular-resolution spatial transcriptome atlas of the human prefrontal cortex (PFC), generated with Stereo-seq from six male AD cases at varying neuropathological stages and six age-matched male controls. Our analyses revealed distinct transcriptional alterations across PFC layers, highlighted disruptions in laminar structure, and exposed AD-related shifts in layer-to-layer and cell-cell interactions.

View Article and Find Full Text PDF

Introduction: Cerebrovascular pathologic changes (CVPC) are prevalent and associated with dementia in those ≥ 90 years. However, CVPC associations to traditional risk factors (hypertension, diabetes, and hyperlipidemia) are variable. We hypothesized that neither traditional risk factors nor related medications would be associated with CVPC presence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!