Brain-computer interfaces (BCIs) are a rapidly expanding field of study and require accurate and reliable real-time decoding of patterns of neural activity. These protocols often exploit selective attention, a neural mechanism that prioritises the sensory processing of task-relevant stimulus features (feature-based attention) or task-relevant spatial locations (spatial attention). Within the visual modality, attentional modulation of neural responses to different inputs is well indexed by steady-state visual evoked potentials (SSVEPs). These signals are reliably present in single-trial electroencephalography (EEG) data, are largely resilient to common EEG artifacts, and allow separation of neural responses to numerous concurrently presented visual stimuli. To date, efforts to use single-trial SSVEPs to classify visual attention for BCI control have largely focused on spatial attention rather than feature-based attention. Here, we present a dataset that allows for the development and benchmarking of algorithms to classify feature-based attention using single-trial EEG data. The dataset includes EEG and behavioural responses from 30 healthy human participants who performed a feature-based motion discrimination task on frequency tagged visual stimuli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192640PMC
http://dx.doi.org/10.1038/s41597-022-01398-zDOI Listing

Publication Analysis

Top Keywords

feature-based attention
16
attention
8
spatial attention
8
neural responses
8
eeg data
8
visual stimuli
8
feature-based
5
visual
5
optimising classification
4
classification feature-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!