A G4C2 hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of ALS and FTLD (C9-ALS/FTLD) with cytoplasmic TDP-43 inclusions observed in regions of neurodegeneration. The accumulation of repetitive RNAs and dipeptide repeat protein (DPR) are two proposed mechanisms of toxicity in C9-ALS/FTLD and linked to impaired nucleocytoplasmic transport. Nucleocytoplasmic transport is regulated by the phenylalanine-glycine nucleoporins (FG nups) that comprise the nuclear pore complex (NPC) permeability barrier. However, the relationship between FG nups and TDP-43 pathology remains elusive. Our studies show that nuclear depletion and cytoplasmic mislocalization of one FG nup, NUP62, is linked to TDP-43 mislocalization in C9-ALS/FTLD iPSC neurons. Poly-glycine arginine (GR) DPR accumulation initiates the formation of cytoplasmic RNA granules that recruit NUP62 and TDP-43. Cytoplasmic NUP62 and TDP-43 interactions promotes their insolubility and NUP62:TDP-43 inclusions are frequently found in C9orf72 ALS/FTLD as well as sporadic ALS/FTLD postmortem CNS tissue. Our findings indicate NUP62 cytoplasmic mislocalization contributes to TDP-43 proteinopathy in ALS/FTLD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192689PMC
http://dx.doi.org/10.1038/s41467-022-31098-6DOI Listing

Publication Analysis

Top Keywords

contributes tdp-43
8
nucleocytoplasmic transport
8
cytoplasmic mislocalization
8
nup62 tdp-43
8
tdp-43
7
nup62
5
cytoplasmic
5
nup62 localizes
4
als/ftld
4
localizes als/ftld
4

Similar Publications

Neuropathological contributions to grey matter atrophy and white matter hyperintensities in amnestic dementia.

Alzheimers Res Ther

January 2025

Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Crta M40, km38, Madrid, 28223, Spain.

Background: Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes.

Methods: In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies.

View Article and Find Full Text PDF

Background: Perry syndrome (PS) is a rare and fatal hereditary autosomal dominant neurodegenerative disorder caused by mutations in dynactin (DCTN1). PS brains accumulate inclusions positive for ubiquitin, transactive-response DNA-binding protein of 43 kDa (TDP-43), and to a lesser extent dynactin.

Objectives: Little is known regarding the contributions of TDP-43, an RNA binding protein that represses cryptic exon inclusion, in PS.

View Article and Find Full Text PDF

Background: Tau pathology and neurodegeneration in the medial temporal lobe (MTL) are highly associated in Alzheimer’s Disease (AD). However, the spatial pattern of neurodegeneration, contribution of individual tau inclusion types, and influence of MTL co‐pathologies (i.e.

View Article and Find Full Text PDF

Anti‐epilepsy drug therapy in a dox‐regulatable TDP‐43 mouse model of ALS‐FTD with seizures.

Alzheimers Dement

December 2024

Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA

Background: Cytoplasmic inclusions of TDP‐43 are the primary pathology in the majority of ALS and FTLD cases. Recent reports in cell and animal models suggest TDP‐43 pathology may enhance neuronal excitability, which could contribute to neurodegeneration via excitotoxicity. Dox‐regulatable rNLS8 mice express human TDP‐43 with mutations in the nuclear localization signal (hTDP‐43NLSm) to promote cytoplasmic accumulation.

View Article and Find Full Text PDF

Background: Tau pathology and neurodegeneration in the medial temporal lobe (MTL) are highly associated in Alzheimer’s Disease (AD). However, the spatial pattern of neurodegeneration, contribution of individual tau inclusion types, and influence of MTL co‐pathologies (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!