Coronavirus disease 2019 (COVID-19) is an acute respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prevention of SARS-CoV-2 transmission has become a global priority. Previously, we showed that a protein subunit vaccine that was developed based on the fusion of the SARS-CoV-2 receptor-binding domain (RBD) to the Fc portion of human IgG1 (RBD-Fc), produced in Nicotiana benthamiana, and adjuvanted with alum, namely, Baiya SARS-CoV-2 Vax 1, induced potent immunological responses in both mice and cynomolgus monkeys. Hence, this study evaluated the protective efficacy, safety, and toxicity of Baiya SARS-CoV-2 Vax 1 in K18-hACE2 mice, monkeys and Wistar rats. Two doses of vaccine were administered three weeks apart on Days 0 and 21. The administration of the vaccine to K18-hACE2 mice reduced viral loads in the lungs and brains of the vaccinated animals and protected the mice against challenge with SARS-CoV-2. In monkeys, the results of safety pharmacology tests, general clinical observations, and a core battery of studies of three vital systems, namely, the central nervous, cardiovascular, and respiratory systems, did not reveal any safety concerns. The toxicology study of the vaccine in rats showed no vaccine-related pathological changes, and all the animals remained healthy under the conditions of this study. Furthermore, the vaccine did not cause any abnormal toxicity in rats and was clinically tolerated even at the highest tested concentration. In addition, general health status, body temperature, local toxicity at the administration site, hematology, and blood chemistry parameters were also monitored. Overall, this work presents the results of the first systematic study of the safety profile of a plant-derived vaccine, Baiya SARS-CoV-2 Vax 1; this approach can be considered a viable strategy for the development of vaccines against COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167921PMC
http://dx.doi.org/10.1016/j.vaccine.2022.05.087DOI Listing

Publication Analysis

Top Keywords

baiya sars-cov-2
12
sars-cov-2 vax
12
sars-cov-2
8
subunit vaccine
8
protective efficacy
8
safety toxicity
8
acute respiratory
8
k18-hace2 mice
8
study vaccine
8
vaccine
7

Similar Publications

Plant-based manufacturing has the advantage of post-translational modifications. While plant-specific N-glycans have been associated with allergic reactions, their effect on the specific immune response upon vaccination is not yet understood. In this study, we produced an RBD-Fc subunit vaccine in both wildtype (WT) and glycoengineered (∆XF) plants.

View Article and Find Full Text PDF

Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing outbreak, disrupting human life worldwide. Vaccine development was prioritized to obtain a biological substance for combating the viral pathogen and lessening disease severity. In vaccine production, biological origin and relevant materials must be carefully examined for potential contaminants in conformity with good manufacturing practice.

View Article and Find Full Text PDF

Detecting immunity against SARS-CoV-2 is vital for evaluating vaccine response and natural infection, but conventional virus neutralization test (cVNT) requires BSL3 and live viruses, and pseudo-virus neutralization test (pVNT) needs specialized equipment and trained professionals. The surrogate virus neutralization test (sVNT) was developed to overcome these limitations. This study explored the use of angiotensin converting enzyme 2 (ACE2) produced from for the development of an affordable neutralizing antibodies detection assay.

View Article and Find Full Text PDF

Cost-effective, and accessible vaccines are needed for mass immunization to control the ongoing coronavirus disease 2019 (COVID-19), especially in low- and middle-income countries (LMIC).A plant-based vaccine is an attractive technology platform since the recombinant proteins can be easily produced at large scale and low cost. For the recombinant subunit-based vaccines, effective adjuvants are crucial to enhance the magnitude and breadth of immune responses elicited by the vaccine.

View Article and Find Full Text PDF

SARS-CoV-2 causes devastating impact on the human population and has become a major public health concern. The frequent emergence of SARS-CoV-2 variants of concern urges the development of safe and efficacious vaccine against SARS-CoV-2 variants. We developed a candidate vaccine Baiya SARS-CoV-2 Vax 1, based on SARS-CoV-2 receptor-binding domain (RBD) by fusing with the Fc region of human IgG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!