Lung cancers account for over 90% of thoracic malignancies and the rapid development of specific cytotoxic drugs and molecular therapies requires a detailed identification of the different histologies, gene drivers or immune microenvironment biomarkers. Nevertheless, the heterogeneous clonal evolution, the emergency of drug-induced resistance and the limited occurrence of genetic alterations claim the need of a deep integration of the tumor's and the patient's biological features. The aim of the present study is to generate a tecnological platform for precision medicine in order to set predictive personalized algorithms for patient diagnosis and therapy. All resectable patients having histologically confirmed stage IB-IIIA non-small cell lung cancer will be enrolled for tissue sampling. A large biobank of lung cancer samples and the corresponding healthy tissues and biological components (ie, blood, stools, etc.) with complete clinical, pathological and molecular information will be collected. The platform will include: a) digital patient data collection; b) whole NGS molecular analyses (exome, transcriptome, methylome) for tumor characterization; c) exploitation and collection of organoids from tissue patients; d) Surface Amplified Raman Spectroscopy; e) microfluidic-based technological drug screening; f) preclinical in vivo models based on patient-derived xenografts; g) generation of specific predictive algorithms taking into account all collected multiparameters. The project will lay the basis of a knowledge hub and qualified technology aimed not only at answering the medical and scientific community's questions, but also meant to be useful to individual patients by predicting the response to adjuvant and second-line drugs in case of relapse of the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cllc.2022.05.007DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
non-small cell
8
cell lung
8
clinical-molecular prospective
4
prospective cohort
4
cohort study
4
study non-small
4
lung
4
cancer promole
4
promole study
4

Similar Publications

Background: Chronic kidney disease (CKD) is a progressive condition that arises from diverse etiological factors, resulting in structural alterations and functional impairment of the kidneys. We aimed to establish the Anoikis-related gene signature in CKD by bioinformatics analysis.

Methods: We retrieved 3 datasets from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs), followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) of them, which were intersected with Anoikis-related genes (ARGs) to derive Anoikis-related differentially expressed genes (ARDEGs).

View Article and Find Full Text PDF

Primary malignant melanoma of the lung; a case report and literature review.

Respir Med Case Rep

December 2024

Division of Pulmonary Disease and Critical Care Medicine, University of Kentucky College of Medicine, Bowling Green, KY, USA.

Primary pulmonary malignant melanoma is an extremely rare non-epithelial malignancy. Literature is merely limited to a few anecdotal case reports. Herein we present a case of a 74-year-old female who was diagnosed with primary malignant melanoma of the lung.

View Article and Find Full Text PDF

Background: The Arp2/3 complex is a key regulator of tumor metastasis, and targeting its subunits offers potential for anti-metastatic therapy. However, the expression profiles, prognostic relevance, and diagnostic value of its subunits across cancers remain poorly understood. This study aims to investigate the clinical relevance of Arp2/3 complex subunits, particularly ARPC1A, in pan-cancer, and to further analyze the potential biological mechanisms of ARPC1A, as well as its association with immune infiltration and chemotherapy drug sensitivity.

View Article and Find Full Text PDF

In this article, we report the first case of a 61-year-old woman who was diagnosed with both nodules and cystic lesions in her lungs. The lung nodules were diagnosed as ALK-positive histiocytosis (APH) carrying an gene fusion, which microscopically displayed a mixed morphology of foamy cells, spindle cells, and Touton's giant cells. Immunohistochemistry showed expression of CD163, CD68, and ALK, while fluorescence hybridization (FISH) with second-generation sequencing (NGS) showed the ALK gene fusion with the FLCN gene variant.

View Article and Find Full Text PDF

Cancer-associated fibroblast-derived exosomal FAM83F regulates KIF23 expression to promote the malignant progression and reduce radiosensitivity in non-small cell lung cancer.

Cytotechnology

April 2025

Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing University Cancer Hospital, Chongqing, 400030 China.

Unlabelled: Cancer-associated fibroblasts (CAFs) have been shown to play a crucial role in the progression of non-small cell lung cancer (NSCLC). Exosomes derived from CAFs have emerged as important mediators of intercellular communication in the tumor microenvironment, contributing to cancer progression. Therefore, it is essential to further investigate the mechanisms by which CAF-derived exosomes regulate NSCLC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!