Salinity is one of the main physical properties that govern the distribution of fishes across aquatic habitats. In order to maintain their body fluids near osmotic set points in the face of salinity changes, euryhaline fishes rely upon tissue-level osmotically-induced responses and systemic endocrine signaling to direct adaptive ion-transport processes in the gill and other critical osmoregulatory organs. Some euryhaline teleosts inhabit tidally influenced waters such as estuaries where salinity can vary between fresh water (FW) and seawater (SW). The physiological adaptations that underlie euryhalinity in teleosts have been traditionally identified in fish held under steady-state conditions or following unidirectional transfers between FW and SW. Far fewer studies have employed salinity regimes that simulate the tidal cycles that some euryhaline fishes may experience in their native habitats. With an emphasis on prolactin (Prl) signaling and branchial ionocytes, this mini-review contrasts the physiological responses between euryhaline fish responding to tidal versus unidirectional changes in salinity. Three patterns that emerged from studying Mozambique tilapia (Oreochromis mossambicus) subjected to tidally-changing salinities include, 1) fish can compensate for continuous and marked changes in external salinity to maintain osmoregulatory parameters within narrow ranges, 2) tilapia maintain branchial ionocyte populations in a fashion similar to SW-acclimated fish, and 3) there is a shift from systemic to local modulation of Prl signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygcen.2022.114071 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!