Spatial navigation and spatial memory are two important skills for independent living, and are known to be compromised with age. Here, we investigate the neural correlates of successful spatial memory in healthy older adults in order to learn more about the neural underpinnings of maintenance of navigation skill into old age. Healthy older adults watched a video shot by a person navigating a route and were asked to remember objects along the route and then attempted to remember object locations by virtually pointing to the location of hidden objects from several locations along the route. Brain activity during watching and pointing was recorded with functional MRI. Larger activations in temporal and frontal regions during watching, and larger deactivations in superior parietal cortex and intraparietal sulcus during pointing, were associated with smaller location errors. These findings suggest that larger evoked responses during learning of spatial information coupled with larger deactivation of canonical spatial memory regions at retrieval are important for effective spatial memory in late life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546223PMC
http://dx.doi.org/10.1016/j.neuropsychologia.2022.108298DOI Listing

Publication Analysis

Top Keywords

spatial memory
16
healthy older
8
older adults
8
spatial
7
memory
5
virtual navigation
4
navigation healthy
4
healthy aging
4
aging activation
4
activation learning
4

Similar Publications

The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Objectives: This study aimed to develop an automated skills assessment tool for surgical trainees using deep learning.

Background: Optimal surgical performance in robot-assisted surgery (RAS) is essential for ensuring good surgical outcomes. This requires effective training of new surgeons, which currently relies on supervision and skill assessment by experienced surgeons.

View Article and Find Full Text PDF

How are arbitrary sequences of verbal information retained and manipulated in working memory? Increasing evidence suggests that serial order in verbal WM is spatially coded and that spatial attention is involved in access and retrieval. Based on the idea that brain areas controlling spatial attention are also involved in oculomotor control, we used eye tracking to reveal how the spatial structure of serial order information is accessed in verbal working memory. In two experiments, participants memorized a sequence of auditory words in the correct order.

View Article and Find Full Text PDF

Visual search becomes slower with aging, particularly when targets are difficult to discriminate from distractors. Multiple distractor rejection processes may contribute independently to slower search times: dwelling on, skipping of, and revisiting of distractors, measurable by eye-tracking. The present study investigated how age affects each of the distractor rejection processes, and how these contribute to the final search times in difficult (inefficient) visual search.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!