Vitronectin is an abundant multifunctional glycoprotein found in serum, the extracellular matrix, and bone, and is involved in diverse physiological processes. Here, we developed a new bioactive dimeric peptide (VnP-8-DN1 dimer) from a human vitronectin-derived motif (IDAAFTRINCQG; residues 206-217; VnP-8) via removal of an isoleucine residue at the N-terminus of VnP-8 and spontaneous air oxidation. The VnP-8-DN1 dimer potently enhanced cell attachment activity, and this activity was mediated by binding to cellular heparan sulfate proteoglycan receptors. Moreover, the VnP-8-DN1 dimer suppressed osteoclast differentiation by blocking the early stage of osteoclastogenesis induced by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). Furthermore, the VnP-8-DN1 dimer decreased the bone-resorbing activity of osteoclasts and increased the survival of osteoclast precursor cells by decreasing the cellular level of c-Fms and reducing RANK expression. Taken together, these results demonstrate that the VnP-8-DN1 dimer inhibits the early stages of M-CSF- and RANK-induced osteoclast differentiation by binding to c-Fms and inhibiting M-CSF signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2022.113252 | DOI Listing |
Exp Cell Res
September 2022
Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea. Electronic address:
Vitronectin is an abundant multifunctional glycoprotein found in serum, the extracellular matrix, and bone, and is involved in diverse physiological processes. Here, we developed a new bioactive dimeric peptide (VnP-8-DN1 dimer) from a human vitronectin-derived motif (IDAAFTRINCQG; residues 206-217; VnP-8) via removal of an isoleucine residue at the N-terminus of VnP-8 and spontaneous air oxidation. The VnP-8-DN1 dimer potently enhanced cell attachment activity, and this activity was mediated by binding to cellular heparan sulfate proteoglycan receptors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!