Cyanide is a highly toxic substance, and the detection of cyanide in the environment and food samples is critical to public health care. Herein, we rationally designed a mitochondria-targeted near-infrared fluorescent probe BTC for ratiometric monitoring of CN in water, food, living cells, and zebrafish. BTC exhibits a remarkable colorimetric ratiometric fluorescence response to CN with high selectivity, low detection limit (54.3 nM), and large Stokes shift. The cyanide sensing mechanism was demonstrated by NMR and ESI-MS analysis and density functional theory (DFT). More importantly, BTC was used for efficient naked-eye colorimetric detection of CN in sprouting potatoes, almonds, and ginkgo fruit samples. Further, the BTC is capable of situ tracking and imaging cyanide in mitochondria of SMMC-7721 cells and in zebrafish via dual emission channels, and was prepared into a kit for convenient and visual on-site sensing of cyanide in food samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2022.121485 | DOI Listing |
Anim Cells Syst (Seoul)
January 2025
Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea.
Osmoregulation is essential for the survival of aquatic organisms, particularly teleost fish facing osmotic challenges in environments characterized by variable salinity. While the gills are known for ion exchange, the intestine's role in water and salt absorption is gaining attention. Here, we investigated the adaptive responses of the intestine to salinity stress in guppies (), observing significant morphological and transcriptomic alterations.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
Mechanical force attracts booming attention with the potential to tune the tumor cell behavior, especially in cell migration. However, the current approach for introducing mechanical input is difficult to apply in vivo. How the mechanical force affects cell behavior in situ also remains unclear.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.
We present versatile tools for intersectional optical and chemical tagging of live cells. Photocaged tetrazines serve as "photo-click" adapters between recognition groups on the cell surface and diverse chemical payloads. We describe two new functionalized photocaged tetrazine structures which add a light-gating step to three common cell-targeting chemical methods: HaloTag/chloroalkane labeling, nonspecific primary amine labeling, and antibody labeling.
View Article and Find Full Text PDFPLoS Pathog
January 2025
School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom.
Porphyromonas gingivalis (Pg) is a keystone pathogen in periodontitis, a highly prevalent disease manifested by chronic inflammation of the periodontium, alveolar bone resorption and tooth loss. During periodontitis pathobionts such as Pg can enter the bloodstream and growing evidence correlates periodontitis with increased risk of cardiovascular and neurodegenerative diseases. However, the mechanism by which immune cells respond to Pg challenge in vivo remains elusive.
View Article and Find Full Text PDFJ Transl Med
January 2025
Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.
Background: Death-Associated Protein Kinase 1 (DAPK1) family members are calcium/calmodulin-regulated serine/threonine kinases implicated in cell death, normal development, and human diseases. However, the regulation of DAPK1 expression in cancer remains unclear.
Methods: We examined the expression and functional impact of a DAPK1 splice variant, DAPK1-215, in multiple cancer cell lines.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!