Review: Unraveling the origin of the structural and functional diversity of plant cystatins.

Plant Sci

Laboratório de Genomas e Populações de Plantas, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil; Programa de Pós-graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil; Programa INCT Plant Stress Biotech, EMBRAPA, CENARGEN, Brasilia, DF, Brazil. Electronic address:

Published: August 2022

The regulation of protease activity is a critical factor for the physiological balance during plant growth and development. Among the proteins involved in controlling protease activity are the cystatins, well-described inhibitors of cysteine proteases present in viruses, bacteria and most Eukaryotes. Plant cystatins, commonly called phytocystatins, display unique structural and functional diversity and are classified according to their molecular weight as type-I, -II, and -III. Their gene structure is highly conserved across Viridiplantae and provides insights into their evolutionary relationships. Many type-I phytocystatins with introns share sequence similarities with type-II phytocystatins. New data shows that they could have originated from recent losses of the carboxy-terminal extension present in type-II phytocystatins. Intronless type-I phytocystatins originated from a single event shared by flowering plants. Pieces of evidence show multiple events of gene duplications, intron losses, and gains throughout the expansion and diversity of the phytocystatin family. Gene duplication events in Gymnosperms and Eudicots resulted in inhibitors with amino acid substitutions that may modify their interaction with target proteases and other proteins. This review brings a phylogenomic analysis of plant cystatin evolution and contributes to a broader understanding of their origins. A complete functional genomic analysis among phytocystatins and their roles in plant development and responses to abiotic and biotic stresses remains a question to be fully solved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2022.111342DOI Listing

Publication Analysis

Top Keywords

structural functional
8
functional diversity
8
plant cystatins
8
protease activity
8
type-i phytocystatins
8
type-ii phytocystatins
8
phytocystatins
6
plant
5
review unraveling
4
unraveling origin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!