Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Management of datasets that include health information and other sensitive personal information of European study participants has to be compliant with the General Data Protection Regulation (GDPR, Regulation (EU) 2016/679). Within scientific research, the widely subscribed'FAIR' data principles should apply, meaning that research data should be findable, accessible, interoperable and re-usable. Balancing the aim of open science driven FAIR data management with GDPR compliant personal data protection safeguards is now a common challenge for many research projects dealing with (sensitive) personal data. In December 2020 a workshop was held with representatives of several large EU research consortia and of the European Commission to reflect on how to apply the FAIR data principles for environment and health research (E&H). Several recent data intensive EU funded E&H research projects face this challenge and work intensively towards developing solutions to access, exchange, store, handle, share, process and use such sensitive personal data, with the aim to support European and transnational collaborations. As a result, several recommendations, opportunities and current limitations were formulated. New technical developments such as federated data management and analysis systems, machine learning together with advanced search software, harmonized ontologies and data quality standards should in principle facilitate the FAIRification of data. To address ethical, legal, political and financial obstacles to the wider re-use of data for research purposes, both specific expertise and underpinning infrastructure are needed. There is a need for the E&H research data to find their place in the European Open Science Cloud. Communities using health and population data, environmental data and other publicly available data have to interconnect and synergize. To maximize the use and re-use of environment and health data, a dedicated supporting European infrastructure effort, such as the EIRENE research infrastructure within the ESFRI roadmap 2021, is needed that would interact with existing infrastructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2022.107334 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!