A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Brownian dynamics simulations of shear-induced aggregation of charged colloidal particles in the presence of hydrodynamic interactions. | LitMetric

Brownian dynamics simulations of shear-induced aggregation of charged colloidal particles in the presence of hydrodynamic interactions.

J Colloid Interface Sci

University of Fribourg, Department of Chemistry, Chemin du Musée 9, CH-1700 Fribourg, Switzerland. Electronic address:

Published: October 2022

Hypothesis: In spite of the abundant literature on Brownian simulations of the aggregation behavior of colloidal suspensions both under quiescent conditions and in the presence of shear, few works performed simulations including the effect of hydrodynamic interactions. Even fewer works have investigated the effects of shear on the aggregation of electrostatically-stabilized colloidal suspensions.

Simulations: In this work, we employed Brownian dynamics simulations implementing the Rotne-Prager-Yamakawa approximation to account for hydrodynamic interactions and investigated the aggregation kinetics of electrostatically-stabilized colloidal suspensions exposed to simple shear, for various Péclet number values, particle volume fractions and surface potential values.

Results: The increase in Péclet number (i.e., in the shear rate), leads to an overall increase in the aggregation rate and the formation of large aggregates that, for sufficiently high volume fractions, rapidly grow, leading to either breakup and restructuring phenomena or percolation of the system. In some cases, a bimodal distribution of the cluster population was observed. Our simulations further indicate that at the highest Péclet, the aggregation dynamics is independent of the energy barrier and entirely controlled by shear. A comparison with a simple BD method reveals that neglecting long-range hydrodynamic interactions leads to a substantial underestimation of the aggregation rate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.05.047DOI Listing

Publication Analysis

Top Keywords

hydrodynamic interactions
16
brownian dynamics
8
dynamics simulations
8
colloidal suspensions
8
electrostatically-stabilized colloidal
8
péclet number
8
volume fractions
8
aggregation rate
8
aggregation
7
simulations
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!