The task of point cloud upsampling aims to acquire dense and uniform point sets from sparse and irregular point sets. Although significant progress has been made with deep learning models, state-of-the-art methods require ground-truth dense point sets as the supervision, which makes them limited to be trained under synthetic paired training data and not suitable to be under real-scanned sparse data. However, it is expensive and tedious to obtain large numbers of paired sparse-dense point sets as supervision from real-scanned sparse data. To address this problem, we propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface. Specifically, we propose a coarse-to-fine reconstruction framework, which contains two main components: point feature extraction and point feature expansion, respectively. In the point feature extraction, we integrate the self-attention module with the graph convolution network (GCN) to capture context information inside and among local regions simultaneously. In the point feature expansion, we introduce a hierarchically learnable folding strategy to generate upsampled point sets with learnable 2D grids. Moreover, to further optimize the noisy points in the generated point sets, we propose a novel self-projection optimization associated with uniform and reconstruction terms as a joint loss to facilitate the self-supervised point cloud upsampling. We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performances to state-of-the-art supervised methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2022.3182266 | DOI Listing |
J Dent
January 2025
Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China. Electronic address:
Objective: This study constructed a new conditional generative adversarial network (CGAN) model to predict changes in lateral appearance following orthodontic treatment.
Methods: Lateral cephalometric radiographs of adult patients were obtained before (T1) and after (T2) orthodontic treatment. The expanded dataset was divided into training, validation, and test sets by random sampling in a ratio of 8:1:1.
Vision Res
January 2025
Department of Psychology, College of Education, Hunan Agricultural University.
Research has demonstrated that humans possess the remarkable ability to swiftly extract ensemble statistics, specifically the average identity, from sets of stimuli, such as facial crowds. This phenomenon is known as ensemble perception. Although previous studies have investigated how physiognomic features like gender and race influence face ensemble perception, the impact of face age on face ensemble coding performance remains a relatively unexplored area.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Navigation and Shipping, Shandong Jiaotong University, Weihai, 264200, Shandong, China.
The laser-induced fluorescence technique has the advantage of fast and non-destructive detection and can be used to classify types of marine microplastics. However, spectral overlap poses a challenge for qualitative and quantitative analysis by conventional fluorescence spectroscopy. In this paper, a 405 nm excitation laser source was used to irradiate 4 types of microplastic samples with different concentrations, and a total of 1600 sets of fluorescence spectral data were obtained.
View Article and Find Full Text PDFBr J Radiol
January 2025
Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta Western Road, Xi'an, Shannxi, 710061.
Purpose: To explore the effect of different reconstruction algorithms (ASIR-V and DLIR) on image quality and emphysema quantification in chronic obstructive pulmonary disease (COPD) patients under ultra-low-dose scanning conditions.
Materials And Methods: This prospective study with patient consent included 62 COPD patients. Patients were examined by pulmonary function test (PFT), standard-dose CT (SDCT) and ultra-low-dose CT (ULDCT).
Sensors (Basel)
January 2025
The 54th Research Institute, China Electronics Technology Group Corporation, College of Signal and Information Processing, Shijiazhuang 050081, China.
The multi-sensor fusion, such as LiDAR and camera-based 3D object detection, is a key technology in autonomous driving and robotics. However, traditional 3D detection models are limited to recognizing predefined categories and struggle with unknown or novel objects. Given the complexity of real-world environments, research into open-vocabulary 3D object detection is essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!