Escherichia coli F18 is a common conditional pathogen that is associated with a variety of infections in humans and animals. LncRNAs have emerged as critical players in pathogen infection, but their role in the resistance of the host to bacterial diarrhea remains unknown. Here, we used piglets as animal model and identified an antisense lncRNA termed FUT3-AS1 as a host regulator related to E. coli F18 infection by RNA sequencing. Downregulation of FUT3-AS1 expression contributed to the enhancement of E. coli F18 resistance in IPEC-J2 cells. FUT3-AS1 knockdown reduced FUT3 expression via decreasing the H4K16ac level of FUT3 promoter. Besides, the FUT3-AS1/miR-212 axis could act as a competing endogenous RNA to regulate FUT3 expression. Functional analysis demonstrated that target FUT3 plays a vital role in the resistance of IPEC-J2 cells to E. coli F18 invasion. A Fut3-knockout mice model was established and Fut3-knockout mice obviously improved the ability of resistance to bacterial diarrhea. Interestingly, FUT3 could enhance E. coli F18 susceptibility by activating glycosphingolipid biosynthesis and toll-like receptor signaling which are related to receptor formation and immune response, respectively. In summary, we have identified a novel biomarker FUT3-AS1 that modulates E. coli F18 susceptibility via histone H4 modifications or miR-212/FUT3 axis, which will provide theoretical guidance to develop novel strategies for combating bacterial diarrhea in piglets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191744PMC
http://dx.doi.org/10.1371/journal.ppat.1010584DOI Listing

Publication Analysis

Top Keywords

coli f18
24
bacterial diarrhea
12
role resistance
8
resistance ipec-j2
8
ipec-j2 cells
8
fut3 expression
8
fut3-knockout mice
8
f18 susceptibility
8
coli
7
f18
6

Similar Publications

Background: The emergence of antibiotic resistant microorganisms associated with conventional swine production practices has increased interest in acid-based compounds having antimicrobial properties and other biological functions as nutritional interventions. Despite the interest in organic acids and monoglycerides, few studies have examined the effects of the combination of these acid-based additives in weaned pigs under disease challenge conditions. Therefore, this study aimed to investigate the effects of dietary supplementation with blend of organic acids and/or medium-chain fatty acid monoglycerides on intestinal health and systemic immunity of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli (ETEC) F18 at 4-week of age.

View Article and Find Full Text PDF

Nine homologous Cold Shock Proteins (Csps) have been recognized in the E.coli Cold Shock Domain gene family. These Csps function as RNA chaperones.

View Article and Find Full Text PDF

Background: Enterotoxigenic Escherichia coli (E. coli) is one of the most prevalent causes of diarrhea in young animals. Postbiotics derived from yeast have the potential to positively influence the mucosal microbiota in the jejunum, therefore it was hypothesized that Saccharomyces yeast postbiotics could enhance the microbiota and mucosal immune response in the jejunum, mitigating the effects of infection with enterotoxigenic E.

View Article and Find Full Text PDF

Biochar has gained interest as a feed ingredient in livestock nutrition due to its functional properties, circularity, potential to reduce environmental impact, and alignment with sustainable agro-zootechnical practices. The in vivo effects of biochar are closely tied to its physical characteristics, which vary depending on the biomass used as feedstock and the production process. This variability can result in heterogeneity among biochar types used in animal nutrition, leading to inconsistent outcomes.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the impact of different level of soybean meal (SBM) replaced by soy protein concentrate on intestinal health and growth performance of nursery pigs under F18+ Escherichia. coli (E. coli).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!