Recent changes to liver allocation replaced donor service areas with circles as the geographic unit of allocation. Circle-based allocation might increase the number of transplantation centers and candidates required to place a liver, thereby increasing the logistical burden of making and responding to offers on organ procurement organizations and transplantation centers. Circle-based allocation might also increase distribution time and cold ischemia time (CIT), particularly in densely populated areas of the country, thereby decreasing allocation efficiency. Using Scientific Registry of Transplant Recipient data from 2019 to 2021, we evaluated the number of transplantation centers and candidates required to place livers in the precircles and postcircles eras, nationally and by donor region. Compared with the precircles era, livers were offered to more candidates (5 vs. 9; p < 0.001) and centers (3 vs. 5; p < 0.001) before being accepted; more centers were involved in the match run by offer number 50 (9 vs. 14; p < 0.001); CIT increased by 0.2 h (5.9 h vs. 6.1 h; p < 0.001); and distribution time increased by 2.0 h (30.6 h vs. 32.6 h; p < 0.001). Increased burden varied geographically by donor region; livers recovered in Region 9 were offered to many more candidates (4 vs. 12; p < 0.001) and centers (3 vs. 8; p < 0.001) before being accepted, resulting in the largest increase in CIT (5.4 h vs. 6.0 h; p < 0.001). Circle-based allocation is associated with increased logistical burdens that are geographically heterogeneous. Continuous distribution systems will have to be carefully designed to avoid exacerbating this problem.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561902 | PMC |
http://dx.doi.org/10.1002/lt.26527 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Department of Rheumatism and Immunity, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
Patients receiving kidney transplant experience immunosuppression, which increases the risk of bacterial, viral, fungal, and parasitic infections. Q fever is a potentially fatal infectious disease that affects immunocompromised renal transplant recipients and has implications in terms of severe consequences for the donor's kidney. A patient with acute Q fever infection following kidney transplantation was admitted to the Tsinghua Changgung Hospital in Beijing, China, in March 2021.
View Article and Find Full Text PDFArtif Organs
January 2025
Department of Anesthesiology, Critical Care Medicine and Pain Therapy, Sapienza University of Rome, Rome, Italy.
Background: Kidney transplantation (KT) is the most effective treatment for end-stage renal disease. End-ischemic hypothermic machine perfusion (EI-HMP) has emerged as a promising method for preserving grafts before transplantation. This study aimed to compare graft function recovery in KT recipients of deceased brain-death (DBD) grafts preserved with EI-HMP versus static cold storage (SCS).
View Article and Find Full Text PDFJ Clin Nurs
January 2025
Institute of Health and Care Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Aim: To explore the meaning of adaptation after visceral transplantation in terms of patient experiences, symptoms, self-efficacy, transplant-specific and mental well-being.
Design: A convergent parallel mixed-methods study, consisting of interviews and generic as well as transplant-specific questionnaires. Results were integrated using meta-inference.
Viruses
December 2024
Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA.
Kidney transplant recipients require a lifelong protocol of immunosuppressive therapy to prevent graft rejection. However, these same medications leave them susceptible to opportunistic infections. One pathogen of particular concern is human polyomavirus 1, also known as BK virus (BKPyV).
View Article and Find Full Text PDFPathogens
December 2024
State Research Center of Virology and Biotechnology "Vector", Koltsovo 630559, Russia.
Human Immunodeficiency Virus (HIV) proviral reservoirs are cells that harbor integrated HIV proviral DNA within their nuclear genomes. These cells form a heterogeneous group, represented by peripheral blood mononuclear cells (PBMCs), tissue-resident lymphoid and monocytic cells, and glial cells of the central nervous system. The importance of studying the properties of proviral reservoirs is connected with the inaccessibility of integrated HIV proviral DNA for modern anti-retroviral therapies (ARTs) that block virus reproduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!