Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multiferroic tunneling junctions (MFTJs), composed of two magnetic electrodes separated by an ultrathin ferroelectric (FE) thin film as a barrier, have received great attention in multi-functional devices. Recent theoretical and experimental works have revealed that ferroelectric polarization exists at room temperature in two-dimensional ferroelectric (2D FE) materials within the ultrathin thickness. Here we propose a novel MFTJ Ni/bilayer InSe/BN/Ni, in which the resistance of the tunneling spin polarization electrons can be modulated by different magnetization alignments of the electrode and electric polarization direction of the 2D FE InSe layer, leading to multiple tunneling resistance states. The tunneling magnetoresistance (TMR) and electroresistance (TER) of MFTJs are enhanced by the inserted h-BN layer, achieving an ON/OFF TER ratio of 4188% as well as a TMR ratio of 581% with a much lower resistance area. The giant tunneling resistance ratio, multiple resistance states, and ultra-low energy consumption in 2D FE-based MFTJs suggest their great potential in non-destructive non-volatile memories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr00785a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!