Phase Transfer-Mediated Degradation of Ether-Based Localized High-Concentration Electrolytes in Alkali Metal Batteries.

Angew Chem Int Ed Engl

Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.

Published: August 2022

Localized high-concentration electrolytes (LHCEs) have attracted interest in alkali metal batteries due to the advantages of forming stable solid-electrolyte interphases (SEIs) on anodes and good chemical/electrochemical stability. Herein, a new degradation mechanism is revealed for ether-based LHCEs that questions their compatibility with alkali metal anodes (Li, Na, and K). Specifically, the ether solvent reacts with alkali metals to generate solvated electrons (e ) that attack hydrofluoroether co-solvents to form a series of byproducts. The ether solvent essentially acts as a phase-transfer reagent that continuously transfers electrons from solid-phase metals into the solution phase, thus inhibiting the formation of stable SEI and leading to continuous alkali metal corrosion. Switching to an ester-based solvating solvent or intercalation anodes such as graphite or molybdenum disulfide has been shown to avoid such a degradation mechanism due to the absence of e .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541886PMC
http://dx.doi.org/10.1002/anie.202207018DOI Listing

Publication Analysis

Top Keywords

alkali metal
16
localized high-concentration
8
high-concentration electrolytes
8
metal batteries
8
degradation mechanism
8
ether solvent
8
alkali
5
phase transfer-mediated
4
transfer-mediated degradation
4
degradation ether-based
4

Similar Publications

Capacitance enhancement by ion-laminated borophene-like layered materials.

Nat Commun

January 2025

Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, 226-8501, Japan.

Atomically flat two-dimensional networks of boron are attracting attention as post-graphene materials. An introduction of cations between the boron atomic layers can exhibit unique electronic functions that are not achieved by neutral graphene or its derivatives. In the present study, we propose a synthesis strategy for ion-laminated boron layered materials in a solution phase, which enables the preparation of analogs by changing the alkali-metal species.

View Article and Find Full Text PDF

In the typical ionothermal synthesis of crystalline carbon nitride (CCN), alkali metal halides are usually used in large amounts. Here, we report a new method for synthesizing poly (heptazine imide) (PHI) using only a trace amount of NaF, which is 20 times less than the amount of NaCl typically required to achieve the PHI structure. Different from the prevailing view that salts function primarily as templates and chelating agents during polymerization, our research revealed the unique role that NaF plays in the polymerization of PHI.

View Article and Find Full Text PDF

Five alkali metal manganese(III) fluorophosphates, KMn(POF)F (I), RbMn(POF)F (II), RbMn(POF)(PO)F (III), RbMn(POF)(PO)F (IV), and CsMn(POF)F (V), were successfully synthesized using a hydrothermal method. The monofluorophosphate anion (POF) groups work as "chemical scissors" to promote low-dimensional spin structures with the aid of alkali metal cations. I and II had an = 2 uniform chain structure formed by corner-sharing -MnOF octahedra.

View Article and Find Full Text PDF

Delocalized multicenter bonds play a crucial role in clusters with a planar hypercoordinate center(s), making it difficult for highly electronegative elements, especially halogen atoms, to achieve the planar hypercoordinate arrangement. Herein, we introduce a star-like cluster Br6Li5-, whose global minimum contains a planar pentacoordinate bromine (ppBr). In this cluster, the central ppBr atom coordinates with five alkali metal Li atoms, which in turn bridge an equal number of electronegative Br atoms in the periphery, leading to the formation of the binary cluster Br6Li5-.

View Article and Find Full Text PDF

Electrolytic manganese residue (EMR) is a solid waste generated during the production of electrolytic manganese metal through wet metallurgy, accumulating in large quantities and causing significant environment pollution. Due to its high sulfate content, EMR can be utilized to prepare supersulfate cement when combined with Ground Granulated Blast furnace Slag (GGBS). In this process, GGBS serves as the primary raw material, EMR acts as the sulfate activator, and CaO powder, along with trace amounts of cement, functions as the alkali activator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!