-Methylation controls the biosynthetic programming of alternapyrone.

Org Biomol Chem

Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, 10900, Thailand.

Published: June 2022

Alternapyrone is a highly methylated polyene α-pyrone biosynthesised by a highly reducing polyketide synthase. Mutations of the catalytic dyad residues, H1578A/Q and E1604A, of the -methyltransferase domain resulted in either significantly reduced or no production of alternapyrone, indicating the importance of -methylation for alternapyrone biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2ob00947aDOI Listing

Publication Analysis

Top Keywords

-methylation controls
4
controls biosynthetic
4
biosynthetic programming
4
alternapyrone
4
programming alternapyrone
4
alternapyrone alternapyrone
4
alternapyrone highly
4
highly methylated
4
methylated polyene
4
polyene α-pyrone
4

Similar Publications

Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease linked to epigenetic changes, particularly DNA methylation. While LDLRAD4 has been implicated in RA through GWAS, its role in RA via methylation remains unclear.

Objectives: To investigate LDLRAD4 methylation patterns in RA and evaluate its potential as a diagnostic and inflammatory biomarker.

View Article and Find Full Text PDF

Exposure profiles, determinants, and health risks of chemicals in personal care products among healthy older adults from the China BAPE study.

J Hazard Mater

January 2025

China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China. Electronic address:

Personal care products (PCPs) are ubiquitously present in the environment, and the associated health risks have been increasingly concerned worldwide. However, knowledge regarding exposure assessments of older adults to these chemicals and their health risks remains largely limited. In the present study, five repeated surveys involving 76 healthy older adults in Jinan, Shandong Province, were performed to quantify urinary exposure levels of 14 chemicals in PCPs.

View Article and Find Full Text PDF

Functionalized Terthiophene as an Ambipolar Redox System: Structure, Spectroscopy, and Switchable Proton-Coupled Electron Transfer.

J Am Chem Soc

January 2025

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.

Organic redox systems that can undergo oxidative and reductive (ambipolar) electron transfer are elusive yet attractive for applications across synthetic chemistry and energy science. Specifically, the use of ambipolar redox systems in proton-coupled electron transfer (PCET) reactions is largely unexplored but could enable "switchable" reactivity wherein the uptake and release of hydrogen atoms are controlled using a redox stimulus. Here, we describe the synthesis and characterization of an ambipolar functionalized terthiophene (TTH) bearing methyl thioether and phosphine oxide groups that exhibits switchable PCET reactivity.

View Article and Find Full Text PDF

Flowering, a pivotal plant lifecycle event, is intricately regulated by environmental and endogenous signals via genetic and epigenetic mechanisms. Photoperiod is a crucial environmental cue that induces flowering by activating integrators through genetic and epigenetic pathways. However, the specific role of DNA methylation, a conserved epigenetic marker, in photoperiodic flowering remains unclear.

View Article and Find Full Text PDF

The granulate ambrosia beetle, Xylosandrus crassiusculus (Motschulsky), and the black stem borer, Xylosandrus germanus (Blandford) are important pests in ornamental nurseries in the eastern USA. These beetles are managed mainly using preventative trunk applications of pyrethroids, such as permethrin or bifenthrin when females typically fly out of woodlots and attack young trees in the spring. Verbenone and methyl salicylate are potential phytochemicals reported as repellants but not completely validated in ornamental nurseries for ambrosia beetle management as an alternative option.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!