Background: Mesenchymal stem cell (MSC)-based therapies offer potential for bone repair. MSC spheroid cultures may harbor enhanced therapeutic potential over MSC monolayers through increased secretion of trophic factors. However, the impact of spheroid size on trophic factor expression is unclear.
Objective: We investigated the effect of spheroid size on trophic factor-related gene expression.
Methods: KUM10, a murine MSC line was used. RNA-seq was used to screen the transcriptional profiles of MSC monolayer and spheroid cultures. Differentially expressed genes identified in RNA-seq were evaluated by q-PCR in cultures of 5 × 104 (S group), 5 × 105 (M group), 5 × 106 (L group) cells/well.
Results: Comparison of expression levels between KUM10 monolayer and spheroid cultures identified 2140 differentially expressed genes, of which 1047 were upregulated and 1093 were downregulated in KUM10 spheroids. Among these, 12 upregulated genes (Bmp2, Fgf9, Fgf18, Ngf, Pdgfa, Pdgfb, Tgfb1, Vegfa, Vegfc, Wnt4, Wnt5a, Wnt10a) were associated with secretory growth factors. Of these, expression of Fgf9, Fgf18, Vegfa and Vegfc was elevated in the L group, and Pdgfb and Tgfb1 was elevated in the S group.
Conclusions: Spheroid size may impact trophic factor expression. Our results will be useful for future studies assessing the utility of MSC spheroids for treating bone injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/BME-221406 | DOI Listing |
Adv Healthc Mater
January 2025
Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, 68167, Mannheim, Germany.
Head and neck squamous cell carcinoma (HNSCC) are invasive solid tumors accounting for high mortality. To improve the clinical outcome, a better understanding of the tumor and its microenvironment (TME) is crucial. Three -dimensional (3D) bioprinting is emerging as a powerful tool for recreating the TME in vitro.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Programa de Pós-graduação Em Recursos Genéticos Vegetais, Universidade Federal Do Recôncavo da Bahia (UFRB), Programa de Pós-graduação Em Recursos Genéticos Vegetais, Cruz das Almas, Bahia, Brazil.
The genus Wittmackia has 44 species distributed in two centers of diversity: the Brazilian clade and the Caribbean clade. The Brazilian clade includes 29 species, with geographic distribution concentrated in the Northeast of Brazil. This study reports the morphology, ultrastructure, pollen viability and stigma receptivity by different microscopy techniques of 23 species of the genus Wittmackia endemic to Brazil and occurring in Atlantic Forest areas.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany.
Background: Most spheroid models use size measurements as a primary readout parameter; some models extend analysis to T cell infiltration or perform caspase activation assays. However, to our knowledge, T cell motility analysis is not regularly included as an endpoint in imaging studies on cancer spheroids.
Methods: Here, we intend to demonstrate that motility analysis of macrophages and T cells is a valuable functional endpoint for studies on molecular interventions in the tumor microenvironment.
Nutrients
December 2024
Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea.
Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The effects of curcumin and the role of hexokinase 2 (HK2) in this process were also examined.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Institute of Life Science and Resources & Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
This study introduces a novel method for the fabrication of concave microwells involving water vapor permeation through polydimethylsiloxane (PDMS). This method leverages the exceptional water vapor permeability of PDMS to enable a scalable and cost-effective fabrication process, addressing the limitations of existing techniques such as photolithography that are resource-intensive and complex. PDMS is more permeable to water vapor than to other gas molecules, resulting in the formation of microwells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!