Engineered Stable Bioactive Per Se Amphiphilic Phosphorus Dendron Nanomicelles as a Highly Efficient Drug Delivery System To Take Down Breast Cancer In Vivo.

Biomacromolecules

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.

Published: July 2022

AI Article Synopsis

  • Conventional small molecular drugs have limitations in cancer treatment due to high toxicity and low effectiveness.
  • Nanotechnology has paved the way for new drug delivery systems, like the nanomicellar platform developed with amphiphilic phosphorus dendrons, which effectively encapsulates the hydrophobic drug doxorubicin (DOX).
  • This new delivery system shows good stability, reduces toxicity, and enhances anticancer activity, making it a promising option for chemotherapy across various cancer types.

Article Abstract

Conventional small molecular chemical drugs always have challenging limitations in cancer therapy due to their high systemic toxicity and low therapeutic efficacy. Nanotechnology has been applied in drug delivery, bringing new promising potential to realize effective cancer treatment. In this context, we develop here a new nanomicellar drug delivery platform generated by amphiphilic phosphorus dendrons (1-C17G3.HCl), which could form micelles for effective encapsulation of a hydrophobic anticancer drug doxorubicin (DOX) with a high drug loading content (42.4%) and encapsulation efficiency (96.7%). Owing to the unique dendritic rigid structure and surface hydrophilic groups, large steady void space of micelles can be created for drug encapsulation. The created DOX-loaded micelles with a mean diameter of 26.3 nm have good colloidal stability. Strikingly, we show that the drug-free micelles possess good intrinsic anticancer activity and act collectively with DOX to take down breast cancer cells in vitro and the xenografted tumor model in vivo through upregulation of Bax, PTEN, and p53 proteins for enhanced cell apoptosis. Meanwhile, the resulting 1-C17G3.HCl@DOX micelles significantly abolish the toxicity relevant to the free drug. The findings of this study demonstrate a unique nanomicelle-based drug delivery system created with the self-assembling amphiphilic phosphorus dendrons that may be adapted for chemotherapy of different cancer types.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.2c00197DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
amphiphilic phosphorus
12
drug
8
delivery system
8
breast cancer
8
phosphorus dendrons
8
cancer
5
micelles
5
engineered stable
4
stable bioactive
4

Similar Publications

The infiltrative and diffuse nature of gliomas makes complete resection unfeasible. Unfortunately, regions of brain parenchyma with residual, infiltrative tumor are protected by the blood-brain barrier (BBB), making systemic chemotherapies, small-molecule inhibitors, and immunotherapies of limited efficacy. Low-frequency focused ultrasound (FUS) in combination with intravascular microbubbles can be used to disrupt the BBB transiently and selectively within the tumor and peritumoral region.

View Article and Find Full Text PDF

Growing evidence supports the importance of extracellular vesicle (EV) as mediators of communication in pathological processes, including those underlying respiratory disease. However, establishing methods for isolating and characterizing EVs remains challenging, particularly for respiratory samples. This study set out to address this challenge by comparing different EV isolation methods and evaluating their impacts on EV yield, markers of purity, and proteomic signatures, utilizing equine/horse bronchoalveolar lavage samples.

View Article and Find Full Text PDF

Purpose: This study aims to conduct a mini review of published literature concerning the role of exosomes in the field of ophthalmology, with a specific focus on Age-Related Macular Degeneration (AMD).

Methods: In this study, a comprehensive search was conducted using PubMed and Google Scholar to identify relevant publications. Additionally, trials submitted to clinicaltrials.

View Article and Find Full Text PDF

Multifunctional Microflowers for Precise Optoacoustic Localization and Intravascular Magnetic Actuation In Vivo.

Adv Healthc Mater

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.

Efficient drug delivery remains a significant challenge in modern medicine and pharmaceutical research. Micrometer-scale robots have recently emerged as a promising solution to enhance the precision of drug administration through remotely controlled navigation within microvascular networks. Real-time tracking is crucial for accurate guidance and confirmation of target arrival.

View Article and Find Full Text PDF

Solution Blow Spinning: An Emerging Nanomaterials-Based Wound-Care Technology.

J Biomed Mater Res B Appl Biomater

February 2025

Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.

Application of one-dimensional nanofibers have witnessed exponential growth over the past few decades and are still emerging with their excellent physicochemical and electrical properties. The driving force behind this intriguing transition lies in their unique high surface-to-volume ratio, ubiquitous nanodomains, improved tensile strength, and flexibility to incorporate deliberate functionalities required for specific and advanced applications. Besides numerous benefits, nanomaterials may adversely interact with biological tissues and potentially be cytotoxic and carcinogenic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!