In medial open-wedge high tibial osteotomy (HTO) hinge axis and osteotomy plane influence the resulting anatomy, but accurate angular quantifications using 3D-planning-simulations are lacking. The objectives of this study were developing a standardized and validated 3D-planning method of an HTO and to perform several simulated realignments to explain unintended anatomy changes. The cutting direction of the main osteotomy was defined parallel to the medial tibial slope and the hinge axis 1.5 cm distal to the lateral plateau. For interobserver testing, this 3D planning was performed on 13 digital models of human tibiae by two observers. In addition, four different hinge axis positions and five differently inclined osteotomy planes each were simulated. The osteotomy direction ranged from medial 0°-30° anteromedial, while the tilt of the osteotomy plane compared to the tibial plateau was -10° to +10°. All anatomic angular changes were calculated using 3D analysis. Multiple HTO plannings by two medical investigators using standardized procedures showed only minimal differences. In the 3D-simulation, each 10° rotation of the hinge axis resulted in a 1.7° significant increase in slope. Tilting the osteotomy plane by 10° resulted in significant torsional changes of 2°, in addition to minor but significant changes in the medial proximal tibial angle (MPTA). Standardized 3D-planning of the HTO can be performed with high reliability using two-observer planning. 3D-simulations suggest that control of the osteotomy plane is highly relevant to avoid unintended changes in the resulting anatomy, but this can be a helpful tool to modify specific angles in different pathologies in the HTO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/10225536221101699 | DOI Listing |
Orthod Fr
January 2025
5 rue Georges Meynieu, 44300 Nantes, France
Introduction: The relationship between facial asymmetry and cervical anomaly is rarely mentioned in the diagnosis of dento-maxillo-facial orthopaedics. It is regrettable that the study of the cervical spine is often ignored in the etio-pathogenesis of these dysmorphoses, particularly in cases of facial asymmetry.
Objective: The aim is twofold: to encourage orthodontists and maxillofacial surgeons to make a systematic study of the cervical spine in craniofacial dysmorphoses and in particular craniofacial asymmetries, without claiming that they are becoming specialists in cervical spine pathology, and to introduce the necessary training in malformations of this anatomical region as part of the orthodontist specialisation curriculum.
J Virol
January 2025
Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA.
Discovered in 1994 in lesions of an AIDS patient, Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the gammaherpesvirus subfamily of the family, which contains a total of nine that infect humans. These viruses all contain a large envelope glycoprotein, glycoprotein B (gB), that is required for viral fusion with host cell membrane to initial infection. Although the atomic structures of five other human herpesviruses in their postfusion conformation and one in its prefusion conformation are known, the atomic structure of KSHV gB has not been reported.
View Article and Find Full Text PDFSci Robot
January 2025
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Aerial insects are exceptionally agile and precise owing to their small size and fast neuromotor control. They perform impressive acrobatic maneuvers when evading predators, recovering from wind gust, or landing on moving objects. Flapping-wing propulsion is advantageous for flight agility because it can generate large changes in instantaneous forces and torques.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
December 2024
IRCCS Humanitas Research Hospital, Milano, Italy; Department of Biomedical Sciences, Humanitas University, Milano, Italy. Electronic address:
Cureus
December 2024
Department of Orthopaedics and Traumatology, All India Institute of Medical Sciences, Raipur, Raipur, IND.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!