Microvascular problems of diabetes, such as diabetic retinopathy and macular edema, can be seen in the eye's retina, and the retinal images are being used to screen for and diagnose the illness manually. Using deep learning to automate this time-consuming process might be quite beneficial. In this paper, a deep neural network, i.e., convolutional neural network, has been proposed for predicting diabetes through retinal images. Before applying the deep neural network, the dataset is preprocessed and normalised for classification. Deep neural network is constructed by using 7 layers, 5 kernels, and ReLU activation function, and MaxPooling is implemented to combine important features. Finally, the model is implemented to classify whether the retinal image belongs to a diabetic or nondiabetic class. The parameters used for evaluating the model are accuracy, precision, recall, and F1 score. The implemented model has achieved a training accuracy of more than 95%, which is much better than the other states of the art algorithms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187442 | PMC |
http://dx.doi.org/10.1155/2022/7887908 | DOI Listing |
J Chem Theory Comput
January 2025
The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
Metal-organic frameworks (MOFs) hold great potential in gas separation and storage. Graph neural networks (GNNs) have proven effective in exploring structure-property relationships and discovering new MOF structures. Unlike molecular graphs, crystal graphs must consider the periodicity and patterns.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Faculty of Information Technology, Beijing University of Technology, Beijing, People's Republic of China.
In fundus images, precisely segmenting retinal blood vessels is important for diagnosing eye-related conditions, such as diabetic retinopathy and hypertensive retinopathy or other eye-related disorders. In this work, we propose an enhanced U-shaped network with dual-attention, named DAU-Net, divided into encoder and decoder parts. Wherein, we replace the traditional convolutional layers with ConvNeXt Block and SnakeConv Block to strengthen its recognition ability for different forms of blood vessels while lightweight the model.
View Article and Find Full Text PDFHumans excel at applying learned behavior to unlearned situations. A crucial component of this generalization behavior is our ability to compose/decompose a whole into reusable parts, an attribute known as compositionality. One of the fundamental questions in robotics concerns this characteristic: How can linguistic compositionality be developed concomitantly with sensorimotor skills through associative learning, particularly when individuals only learn partial linguistic compositions and their corresponding sensorimotor patterns? To address this question, we propose a brain-inspired neural network model that integrates vision, proprioception, and language into a framework of predictive coding and active inference on the basis of the free-energy principle.
View Article and Find Full Text PDFPLoS One
January 2025
Institute for Global Ecology, Florida Institute of Technology, Melbourne, Florida, United States of America.
Marine heatwaves are increasing in intensity and frequency however, responses and survival of reef corals vary geographically. Geographical differences in thermal tolerance may be in part a consequence of intraspecific diversity, where high-diversity localities are more likely to support heat-tolerant alleles that promote survival through thermal stress. Here, we assessed geographical patterns of intraspecific genetic diversity in the ubiquitous coral Pocillopora damicornis species complex using 428 sequences of the Internal Transcribed Spacer 2 (ITS2) region across 44 sites in the Pacific and Indian Oceans.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Information Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
As education increasingly relies on data-driven methodologies, accurately predicting student performance is essential for implementing timely and effective interventions. The California Student Performance Dataset offers a distinctive basis for analyzing complex elements that affect educational results, such as student demographics, academic behaviours, and emotional health. This study presents the GNN-Transformer-InceptionNet (GNN-TINet) model to overcome the constraints of prior models that fail to effectively capture intricate interactions in multi-label contexts, where students may display numerous performance categories concurrently.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!